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1. Introduction

Confidence intervals on predicted system behavior are necessary for design and optimization
of engineering systems. They are also useful from a scientific point of view, where
model validation with respect to experimental measurements requires careful measures of
uncertainty in both experimental data and computational predictions. In general, uncertainty
in computational results can be due to both model and parametric uncertainty. The present
work deals with the latter. Empirical physical parameters used in the construction of
computational models are inherently uncertain as a result of unavoidable experimental
measurement errors. We seek to develop techniques to quantify propagation of this parametric
uncertainty, with a focus on detailed, stiff, chemical kinetics.

In general, the propagation of parametric uncertainty can be studied using Monte
Carlo (MC) simulations by sampling assumed or known distributions of model parameters
over many iterations. For complex models that consume considerable computational
resources, this method may be very costly and inefficient. Also, this approach does not
readily provide information about the sensitivity of model outputs to specific parametric
uncertainties. Further, conventional sensitivity analysis sheds some light on first-order
parametric dependencies, but does not propagate nonlinear interactions through the model
of interest.

An alternative approach is discussed here, based on a spectral stochastic description
of uncertain parameters and field quantities using polynomial chaos (PC) expansions for
stochastic representation of uncertainty. The polynomial chaos [1–7] is a member of the set
of homogeneous chaos, first defined by Wiener [1]. Ghanem and Spanos [7] implemented a
spectral PC expansion in terms of Hermite polynomials of Gaussian basis functions in a finite
element method. This was applied in the modeling of transport in porous media [8], solid
mechanics [9,10] and structural [11] applications. The utility of the Hermite-Gaussian PC for
modeling non-Gaussian processes was also investigated in [12, 13]. Le Maı̂tre et al. [14, 15]
extended the application of these techniques to thermo-fluid applications in the context of low
Mach number flow. Xiu et al. [16] used generalized PC [17] for stochastic UQ in the modeling
of flow-structure interactions, and for diffusion problems [18]. Debusschere et al. [19,20] used
PC for UQ applied to electrochemical flow in microfluidic systems. Reagan et al. [21] studied
UQ for chemically reacting H2-O2 systems in supercritical water.

In the most basic application, using MC sampling of the stochastic parameters, the
corresponding solutions of the deterministic system are evaluated and projected onto the PC
basis to compute the spectral mode coefficients. These coefficients are then used to construct
probability density functions (PDFs) of the solution, to infer sensitivity to various parametric
uncertainties, and to highlight the dominant sources of uncertainty. This non-intrusive spectral
projection (NISP) approach [11,15,21] has the advantage of being applicable to legacy codes,
which are run with varying parameters to compute the statistics and spectral mode values.

For computationally intensive problems, large-scale Latin-Hypercube MC sampling [22]
of many deterministic runs may not be practical. For example, studying homogeneous
ignition using a reduced model of 8 uncertain reaction rate preexponentials and five uncertain
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enthalpies of formation, requires over to 20,000 individual deterministic evaluations of the
model to adequately sample the full stochastic space and reach convergence [21]. Increasing
the order of the PC expansion to more accurately represent the resultant output PDFs and/or
study larger sets of uncertain parameters can dramatically increase the number of samples
required. More complex models containing a greater number of reactions increase both the
required sampling and the time required to compute individual realizations. As a result, more
complex problems demand a more efficient approach.

An “intrusive” spectral/pseudospectral methodology allows the direct incorporation of
spectral stochastic information into the basic formulation of the model. If it is possible
to reformulate the governing equations for a particular problem, numerical efficiency can
be gained by creating a purpose-built spectral code. In general, these implementations of
spectral PC expansions involve (1) the introduction of a new stochastic dimension for each
uncertain parameter in the problem, (2) the expansion of parameters and field quantities
using PC in terms of these stochastic dimensions, (3) the substitution of these expansions
in the governing equations and their reformulation using a Galerkin projection procedure
into equations for the stochastic mode strengths, and (4) the solution of this larger system
of equations and the reconstruction of the field quantities of the solution based on their PC
expansions in terms of the computed stochastic modes. Depending on system nonlinearities
and the necessary spectral order, the computational effort required to solve this system can be
many times smaller than that needed to generate the number of MC realizations required to
yield uncertainty estimates of comparable accuracy.

It is important to note that, while polynomial chaos-based uncertainty quantification
provides sensitivity information, it actually goes well beyond sensitivity analysis to propagate
the full probablistic representation of the model inputs to the model outputs. Depending on
the chosen order of the PC expansion, intrusive spectral methods also provide higher-order
sensitivity information. Higher-order effects are not lumped into a single coefficient, but are
considered independently and in terms of parameter-parameter interactions. This enables the
analysis of uncertainties due to correlations between model parameters.

This paper advances the state of the art in UQ of chemical systems by developing
the formulation for a spectral chemical source term for detailed chemical mechanisms with
multiple parametric uncertainties in rate constants and thermodynamic properties. Further, we
address the numerical challenges inherent in such an intrusive spetral stochastic construction
for highly-nonlinear chemical systems. The application focus is on 0-D homogeneous
ignition, a problem that highlights the utility and potential challenges of this approach. The
treatment starts with a basic summary of spectral and pseudospectral reformulations, describes
the components of the intrusive PC formulation for a generalized chemical source term, uses
these tools to examine homegeneous ignition for a detailed reaction mechanism, examines
the advantages and disadvantages of intrusively-reformulated models, and discusses issues of
stability and the limits of the formulation.
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2. Formulation

2.1. Spectral methodology

We describe an uncertain model parameter as a stochastic quantity with a known PDF. Let an
uncertain parameter λ be empirically given by

λ � λ
�

λ̂ (1)

where λ is the mean and λ̂ defines the range of empirical uncertainty.
With no additional information on the shape/moments of its distribution, we assume λ

to be Gaussian with a mean λ0 and a standard deviation λ1 consistent with Eq. 1. Letting ξ
denote a normalized Gaussian variable with zero mean and unit variance, λ can be expressed
as:

λ � λ0 � ξλ1 (2)

If, on the other hand, additional physical constraints are in effect, e.g. when λ is a pre-
exponential Arrhenius rate constant that is strictly positive, then a lognormal distribution is
more adequate. In this case, as discussed in [12, 13] and section 2.3.4, λ can be expanded in
powers of ξ, with the necessary order dictated by the skewness of the distribution.

For a general prescribed distribution of λ, satisfying specific conditions [23], we can
represent λ as a spectral expansion in terms of suitable orthogonal eigenfunctions with weights
associated with a particular density. A well-studied example is the Wiener process (Brownian
motion) which can be written as a spectral expansion in terms of Hermite polynomials
and a normal Gaussian distribution. Other examples include Charlier polynomials and the
Poisson distribution, and the Laguerre polynomials and the Gamma distribution [23]. In the
present context, these spectral expansions are generally referred to as Polynomial Chaos (PC)
expansions, following Wiener [1], and focus will be exclusively on the Hermite-Gauss PC.
Moreover, while these expansions are generally infinite series, this work will consider only
PC expansions truncated at some suitably high order.

A parameter λ can be represented using the (truncated) PC expansion as,

λ � P

∑
k � 0

λkΨk (3)

where the Ψk’s are the orthogonal Hermite polynomial functions of ξ [7], such that

Ψk
� ������ ����� 1 k � 0

ξ k � 1

ξ2 � 1 k � 2	
	
	 (4)

and the λk’s are the known spectral mode strengths for the PC expansion for λ.
More generally, for Ndim uncertain parameters, each parameter introduces a stochastic

dimension ξ, such that, with θ ��� ξ1 
 ξ2 
 	
	
	 
 ξNdim � ,
Ψk

� Ψk � θ � � Ψk � ξ1 
 ξ2 

������
 ξNdim � 
 k � 0 

�
�
��
 P� (5)
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Up to second order (Nord
� 2), these polynomials are given by:

Ψk
� ��� �� 1 k � 0

ξk k � 1 �
�
� Ndim

ξmξn
� δnm k � Ndim � 1 �
��� P; m 
 n � 1 �
�
� Ndim

(6)

The Ψk’s are orthogonal with respect to the inner product,� ΨiΨ j ����� 	
	
	 � Ψi � θ � Ψ j � θ � g � ξ1 � 	
	�	 g � ξN � dξ1
	
	
	 dξN (7)

where

g � ξ � � e � ξ2 � 2�
2π

(8)

is the Gaussian measure. We thus have� Ψi � � δi0 
 (9)

and � ΨiΨ j � � 0 
 i �� j 
 i � 0 
 j � 0 (10)

Note that, in general [17], the number of terms in the PC expansion is given by: P � 1 �� Ndim � Nord �� � Ndim!Nord! �
Using the above orthogonality, starting with the PC expansion for a general parameter λ

in Eq. 3 above, multiplying both sides by Ψi and taking inner products, we have

λi
� � λΨi �� Ψ2

i � 
 i � 0 

���
�!
 P (11)

Using this formalism, a generic stochastic field variable Φ � x 
 t � can also be represented using
the PC expansion, as:

Φ � P

∑
k � 0

Φk � x 
 t � Ψk (12)

where the Φk’s are the unknown spectral modes of Φ, analogous to the known spectral modes
of λ. Again, given the orthogonality of the Ψk’s, the Φk’s are given by

Φk
�#" ΦΨk $%

Ψ2
k & 
 k � 0 

�
���!
 P� (13)

The projection in Eq. 13 can be used in non-intrusive UQ analysis [21] to determine the
Φk’s based on deterministic realizations corresponding to particular values of the random
parameters. The Galerkin projection in Eq. 13 is also the basis for reformulating the governing
equations. Such a reformulated model construction provides built-in spectral stochastic
uncertainty information, and eliminates the need for extensive Monte Carlo sampling. Instead,
the extended system of governing equations can be solved with an increase in computational
load due to (1) an increase in the equation system size by a factor of P � 1, and (2) an increase
in the cost of each equation right-hand-side evaluation due to coupling among the P � 1 modes.
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For a simple example of full spectral reformulation, consider an ODE in terms of Φ and
parameter λ:

dΦ
dt

� λΦ 
 Φ � 0 � � Φ0 (14)

We substitute the expansions Eq. 3 and Eq. 12 into the ODE, and rearrange to get:
P

∑
k � 0

dΦk

dt
Ψk

� P

∑
p � 0

P

∑
q � 0

λpΦqΨpΨq (15)

Multiplying both sides by Ψi, and taking inner products, using the orthogonality of the PC
basis, we obtain:

dΦi

dt
� P

∑
p � 0

P

∑
q � 0

λpΦq

%
ΨpΨqΨi &%

Ψ2
i & 
 i � 0 

�
���!
 P (16)

where the Cpqi
� %

ΨpΨqΨi &  % Ψ2
i & are precomputed coefficient tensors.

Solving for the evolution of these modes allows the reconstruction of Φ � x 
 t � per Eq. 12.
This approach requires extensive and specific recoding of an existing deterministic code,
which can be difficult. For a nonlinear model with multiple stochastic parameters and field
variables, evaluation of the multi-dimensional summations and coefficient tensors becomes
intractable. Moreover, there is no evident means of dealing with non-polynomial functions
of stochastic quantities within this fully spectral context. These difficulties are resolved
using a pseudospectral construction, where order-2P PC expansions resulting from pairwise
products of order-P stochastic quantities are reprojected onto an order-P polynomial before
proceeding further. This retains the order-P accuracy of the construction, while providing
great simplification of the implementation. This construction is discussed in the following
section.

2.2. Pseudospectral formulation

In this formulation, a PC-product term involving more than two factors is evaluated using
two-factor pseudospectral products. Consider for instance the triple product

w � λuv (17)

where λ, u, and v are expanded as in Eq. 3. Projecting each two-factor product onto a � P � 1 �
polynomial, we have:

w̃ � uv ' w̃i
� P

∑
j � 0

P

∑
k � 0

ukv j

%
ΨkΨ jΨi &%

Ψ2
i & (18)

w � λw̃ ' wi
� P

∑
j � 0

P

∑
k � 0

λkw̃ j

%
ΨkΨ jΨi &%

Ψ2
i & (19)

This construction allows for a general representation using a new pseudospectral “overloaded”
multiplication operation

w � λ ( � u ( v � (20)
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where each deterministic multiplication is transformed into a corresponding product of
polynomial chaos expansions. This has great potential for automatic transformation of legacy
deterministic code into a stochastic pseudo-spectral PC code. Note that the evaluation of the
resulting pseudo-spectral mode strengths is straightforward for polynomial functions, w � u � ,
by addition of pseudospectral products, but requires additional work for other functions, such
as inverses, exponentials, logarithms, etc. Generally, if a local polynomial approximation
for any of these functions is found, at least in the

�
3σ � u � of u0, then substitution of

that polynomial in the above projection will give an approximation to the necessary wa’s.
Taylor series expansions may be used towards this end, however, the resulting representation
is not convergent in general, as dictated by the convergence of the Taylor series for the
specific function at hand. Alternatively, the expectations can be evaluated using sampling or
quadrature, but the associated computational cost rises very quickly with increasing number
of stochastic dimensions ξ. Alternative approaches have been outlined in Debusschere et
al. [20, 24]. Inverses, w � 1  u, can be handled robustly using a linear-system solve for the
modes of w. We denote this pseudospectral inversion below as w � 1 ) u. Moreover, [24]
presents a general integration approach for handling any function w � u � as long as its derivative
dw  du is a rational function of u. We have utilized these constructions to develop a a
generalized library of routines for pseudospectral PC operations that multiplies, inverts, or
otherwise algebraically transforms spectral variables.

2.3. Chemical source term

2.3.1. Definition of the chemical system A key to the construction of a spectral reacting-
flow code is an efficient stochastic chemical source term. In the following, we present
dimensionless deterministic and stochastic formulations for a chemical source term.

Consider a spatially homogeneous perfect gas mixture of N species χi, with i � 1 
 	�	
	 
 N,
participating in M reactions:

N

∑
i � 1

ν *ikχi + ' N

∑
i � 1

ν *,*ikχi 
 k � 1 

�
����
 M (21)

where ν *ik and ν *,*ik are the stoichiometric coefficients for species i appearing as a reactant or
product, respectively, in reaction k. Given this set of reactions, the mass production rate of
species i is given by

wi
� Wi

M

∑
k � 1

νikCkRk (22)

where Wi is the molar mass of species i,

νik
� ν *,*ik � ν *ik (23)

and, Ck is a correction factor due to third-body and/or pressure-fall-off corrections [25]. This
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factor is given by

Ck
� �������� �������

1 for a non-third-body, non-pressure-fall-off rxn

ζk
� N

∑
i � 1

βikci for a third-body, non-pressure-fall-off rxn-
Pk

r

Pk
r � 1 . Fk for a pressure-fall-off rxn (third body or not)

(24)

where, βik is the third-body efficiency of species i in reaction k, Pk
r is given by [25]:

Pk
r
� ������ ����� kF / 0

k cM

kF /∞
k

for a pressure-fall-off third-body (+M) rxn

kF / 0
k ci

kF /∞
k

for a pressure-fall-off non-third-body (+χi) rxn

(25)

Here, cM is the total concentration of the mixture, kF / 0
k and kF /∞

k are the low and high pressure
forward rates of reaction k, respectively [25], and Fk is a known function of Pk

r and T
describing fall-off behavior for each pressure fall-off reaction k [25]. Rk is the rate of progress
of reaction k, given by

Rk
� kF

k

N

∏
i � 1

c
ν 0ik
i
� kR

k

N

∏
i � 1

c
ν 0 0ik
i (26)

where kF
k and kR

k are the forward and reverse rates of reaction k, ci
� ρYi  Wi is the molar

concentration of species i, ρ is the mass-density of the mixture, and Yi is the mass fraction of
species i in the mixture.

The time-evolution of the chemical system is governed by the ODE system,

dci

dt
� Da

Wi
wi 
 i � 1 
��
�
��
 N � 1 (27)

dρ
dt

� Da
cpT

N

∑
i � 1

hiwi
� DaW

N

∑
i � 1

wi

Wi
(28)

with algebraic constraints resulting from mass conservation,
N

∑
i � 1

Yi
� 1 (29)

and the perfect gas state equation:

P0
� ρT

W
(30)

In this nomenclature [26], Da is the Damköhler number defined based on reference
quantities, T is the temperature, cp is the mixture specific heat at constant pressure, hi

is the specific enthalpy of species i, P0 is the stagnation pressure (assumed constant),
W � 1  ∑N

i � 1YiWi is the molar mass of the mixture. These equations are closed with initial
conditions ci � t � 0 � � c0

i and ρ � t � 0 � � ρ0.
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2.3.2. Fully spectral construction We illustrate in this section the necessary spectral
construction for the representation of the reaction rates of progress, Rk, given above in Eq.26,
assuming known spectral expansions for the forward and reverse rates, and the concentrations.
Moreover, we illustrate this for brevity with the forward term R F

k , given that the extension to
the reverse term is straightforward in this context. Thus, we seek to present the full spectral
construction for R F

k , given by

R F
k
� kF

k

N

∏
i � 1

c
ν 0ik
i � (31)

To begin with, in order to exclude zero exponents, define the set of species indices containing
those species with non-zero stoichiometric coefficients on the reactants side of reaction k.
This set is given by,

Ik
�1� i 2 ν *ik �� 0 � ��� ik1 
 ik2 

�
����
 ikLk � � (32)

Dropping the k-sub/super-scripts for clarity, we have

I �1� i1 
 i2 

�
���!
 iL � (33)

and

R F � kF
L

∏
p � 1

c
ν 0ip
ip

� kF
L

∏
p � 1 3 P

∑
j � 0

� cip � jΨ j 4 ν 0ip
(34)

For any integer n � 0, we have

3 P

∑
j � 0

a j 4 n � P

∑
j1 � 0

P

∑
j2 � 0

	
	
	 P

∑
jn � 0

a j1a j2
	
	
	 a jn

� P

∑
jb � 0 5555

n

b � 1

n

∏
q � 1

a jq (35)

where
P

∑
jb � 0 5555

n

b � 1
� P

∑
j1 � 0

P

∑
j2 � 0

�
�
� P

∑
jn � 0

(36)

so that R F can be expressed as

R F � kF
L

∏
p � 1

P

∑
jb � 0 5555

ν 0ip
b � 1

ν 0ip
∏
q � 1

� cip � jqΨ jq � (37)

Further,

R F � kF 67 P

∑8
jb 9 1 � 0 5555

ν 0i1
b � 1

ν 0i1
∏
q � 1

� ci1 � 8 jq 9 1Ψ 8
jq 9 1 :; 67 P

∑8
jb 9 2 � 0 5555

ν 0i2
b � 1

ν 0i2
∏
q � 1

� ci2 � 8 jq 9 2Ψ 8
jq 9 2 :; 	�	
	

	
	
	 67 P

∑8
jb 9 L � 0 5555

ν 0iL
b � 1

ν 0iL
∏
q � 1

� ciL � 8 jq 9 LΨ 8
jq 9 L :;� P

∑8
jb 9 1 � 0 5555

ν 0i1
b � 1

P

∑8
jb 9 2 � 0 5555

ν 0i2
b � 1

	
	
	 P

∑8
jb 9 L � 0 5555

ν 0iL
b � 1

L

∏
p � 1

ν 0ip
∏
q � 1

� cip � 8 jq 9 pΨ 8
jq 9 p (38)
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or,

R F � kF
P

∑8
jb 9 z � 0 5555

ν 0iz
b � 1 5555

L

z � 1

67 L

∏
p � 1

ν 0ip
∏
q � 1

� cip � 8 jq 9 p :; 67 L

∏
p � 1

ν 0ip
∏
q � 1

Ψ 8
jq 9 p :; (39)

Finally, with

kF � P

∑
i � 0

kF
i Ψi (40)

we have

R F � P

∑
i � 0

P

∑8
jb 9 z � 0 5555

ν 0iz
b � 1 5555

L

z � 1

67 kF
i

L

∏
p � 1

ν 0ip
∏
q � 1

� cip � 8 jq 9 p :; 67 Ψi

L

∏
p � 1

ν 0ip
∏
q � 1

Ψ 8
jq 9 p :; (41)

and the mode strengths in the PC expansion for R F � ∑P
a � 0 R F

a Ψa are given by

R F
a
� P

∑
i � 0

P

∑8
jb 9 z � 0 5555

ν 0iz
b � 1 5555

L

z � 1

67 kF
i

L

∏
p � 1

ν 0ip
∏
q � 1

� cip � 8 jq 9 p :;=< ΨaΨi ∏L
p � 1 ∏

ν 0ip
q � 1 Ψ 8

jq 9 p >" Ψ2
a $ (42)

It should be evident that proceeding in this manner is not only cumbersome but
computationally intractable. This is a result of (1) the high-dimensional summation
and product operations; (2) the fact that both the forward and reverse rates have
complex dependencies on the presumed uncertainties in the reaction rate constants
(preexponential, temperature exponent, and activation energy), field variables (temperature
and concentrations), and thermodynamic properties; and (3) the necessary accounting for third
body and pressure-falloff corrections. This is the primary motivation for the pseudospectral
construction introduced above, and further specified below.

In the following, we discuss the dependence of the reaction rates on uncertain
thermodynamic properties, and the specification of lognormal distributions for uncertain
reaction rate parameters. Given this, we then proceed to the complete pseudo-spectral
formulation for the chemical source term.

2.3.3. Reaction rates with thermodynamic uncertainties The generalized source term allows
any rate constant kF

j be uncertain. Consider a situation with several species i � 1 

�
���!
 N
participating in M reactions k � 1 

�
���!
 M with forward rates kF

k
� BkT α1e � Ek

� T . The reverse
rate is derived from the forward rate by a mutual relationship to the equilibrium constant.
There may be instances where the mechanism specifies the reverse rate explicitly. If this is
not the case, we must derive the spectral reverse reaction rate from the spectral forward rate
constant. This coupling of forward and reverse reaction rates allows the introduction and
propagation of thermodynamic parametric uncertainty into the source term.

The reverse rate is related to the forward rate through the equilibrium constant:

kR
k
� kF

k

Kc / k (43)
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where Kc / k is defined as:

Kc / k � e � ζk
� T

T σk
(44)

σk
� N

∑
i � 1

νik (45)

ζk
� N

∑
i � 1

νikgiWi (46)

Note that gi
� gi � T � � hi

� T si is the dimensionless Gibbs free energy per unit mass of species
i.

The relationship between enthalpic and entropic uncertainties and the Gibbs free energy
derives from the species heat capacity, Cp / i. Note that giWi

� Go
i
� Go

i  RTre f is the
dimensionless per-mole Gibbs free energy, with Go

i being the corresponding dimensional
quantity. We recall that

Go
i
� Ho

i
� T So

i (47)

Assuming ideal gas properties, one can compute the enthalpy and entropy by integration over
T :

Ho
i
� � T

0
Cp / idT (48)

So
i
� � T

0

Cp / i
T

dT (49)

Let Cp / i � Cp / i � T � be uncertain with a specified mean Cp / i0 and standard deviation Cp / i1,

Cp / i � Cp / i0 � ξiCp / i1 (50)

where Cp / i0 � Cp / i0 � T � and Cp / i1 � Cp / i1 � T � are known functions of temperature and ξi is a
Gaussian random variable. Integrating to compute the enthalpy and entropy:

Ho
i
� � T

0
Cp / i0dT � ξi � T

0
Cp / i1dT (51)� Hi0 � ξiHi1 (52)

So
i
� � T

0

Cp / i0
T

dT � ξi � T

0

Cp / i1
T

dT (53)� Si0 � ξiSi1 (54)

Reconstituting the definition of Go
i , we have

Go
i
� Hi0 � ξiHi1

� T � Si0 � ξiSi1 � (55)� Hi0
� T Si0 � ξi � Hi1

� T Si1 � (56)

Substituting Ψi = ξi (first-order modes in a Gaussian basis) and Ψ0 = 1 � 0 gives a complete
expression representing Go

i in terms of the means and standard deviations of enthalpy and
entropy:

Go
i
� � Hi0

� T Si0 � Ψ0 � � Hi1
� T Si1 � Ψi (57)� 1

∑
m � 0

� Him
� T Sim � Ψm ? i (58)
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Go
i is defined here in molar units, and so we can divide by Gref

� RTref to nondimensionalize,
and substitute into Eq. 46:

ζk
� N

∑
i � 1

νik

RTref

1

∑
m � 0

� Hik
� T Sik � Ψm ? i (59)� 1

∑
m � 0

N

∑
i � 1

νik

RTref
� Hik

� T Sik � Ψm ? i (60)

This defines an uncertain Kc / k in terms of uncertain thermodynamic parameters, coupling
uncertainty in reaction equilibrium to uncertainty in the Gibbs free energy.

2.3.4. Lognormal distributions in a Gaussian basis When assuming a priori the probability
distribution corresponding to each uncertain reaction rate pre-exponential constant, it is
necessary to choose distributions with zero probability of negative values. One typical
choice is the lognormal distribution [27]. We discuss here the means of construction of a
PC expansion for a random variable with a given lognormal distribution.

Let g be a normal random variable with mean µg and standard deviation σg. Further, let
u be a lognormal random variable [28], with

u � eg (61)

Then for a given ζ � 0,

P @ u A ζ B � P @ g A lnζ B (62)

Let the median of u be mu, i.e. P @ u A mu B � 0 � 5. Then, since P @ g A µg B � 0 � 5, we have

µg
� lnmu (63)

Following Phenix et al. [27], we can define a multiplicative factor, S, as

P @mu  S A u A muS B � 1 � ε (64)

where ε is a suitably small number (e.g. 0.05). then

1 � ε � P @ u A muS B � P @ u A mu  S B � P @ g A ln � muS ��B � P @ g A ln � mu  S ��B� P @ g A µg � lnS B � P @ g A µg
� lnS B� 1 � P @ g C µg � lnS B � P @ g A µg

� lnS B (65)

But, by the symmetry of g, P @ g C µg � lnS B � P @ g A µg
� lnS B , hence

P @ g A µg
� lnS B � ε

2
(66)

and

P @ g A µg � lnS B � 1 � ε
2 � (67)

With U denoting the standard normal random variable, we have

P @ g A β B � Fg � β � � FU � β � µg

σg
� � P @U A β � µg

σg
B (68)
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thus,

P @ g A µg � lnS B � FU � lnS
σg

� � 1 � ε
2

(69)

and, from tabulated FU , we have,

lnS
σg

� F � 1
U � 1 � ε

2
� (70)

or,

σg
� lnS

F � 1
U � 1 � ε

2 � (71)

such that, e.g. for ε � 0 � 05, we have F � 1
U � 1 � ε

2 � � 1 � 96.
Thus, given a presumed lognormal distribution for the random variable u, with known

median mu and multiplicative factor S, the corresponding normally distributed random
variable g, such that u � eg, is determined by its mean µg and standard deviation σg given
in 63 and 71 above, respectively. Given this, Ghanem [12] provides the requisite formulation
for the mode strengths of the sought-after PC expansion for u, where the k-th order spectral
mode strength of u is given by:

uk
� exp @ µg � 1

2
σ2

g B σk
g

k! � (72)

2.3.5. Assembling a pseudospectral source term As seen in the example of full-spectral
reformulation, the evaluation of the products of multiple PC expansions can be quite complex.
But by truncating the expansions of products to order P (section 2.2), a set of pseudospectral
operators may be used to form the chemical source term.

First, define an overloaded product operator:

w � N

∏
i � 1

iu DFEw � N

∏
i � 1

iu � � 	�	
	 �
� 1u ( 2u �G( 3u �H( 	
	
	 ( Nu � (73)

Using pseudospectral operators, the spectral source term can be constructed directly,
following the definition in section 2.3.1.

First, the forward reaction rate for each reaction,

kF
k
� BkT ne I Ea

T (74)

can be written in terms of pseudospectral multiplication, inversion, exponentiation, and
logarithm operators:

kF
k
� Bk ( � exp @ n ( ln � T � � Ea ( � 1 ) T ��BJ� (75)

where T is now a PC expansion for temperature, and Bk 
 n 
 and Ea are represented as PC
expansions, introducing any specified parametric uncertainty.

Each reaction rate now includes the uncertainty contributed by an uncertain temperature
(propagated in the computations), the parametric uncertainty that may be associated with
a lognormally-distributed reaction pre-exponential, Bk, the parametric uncertainty in the
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activation energy, and/or parametric uncertainty in the temperature exponent n (each as
specified).

The reverse rate can be calculated in two ways. If an explicit reverse reaction rate is
available, it can be included directly. Otherwise, the reverse reaction rate may be calculated
from the equilibrium constant:

kF
k

kR
k

� Kc / k � e � ζk
8
T 9 � T

T σk
(76)

with ζk and σk as defined in Eqs. 43-46, T given by its computed PC expansion, and the
requisite pseudospectral operations. This computation also includes the effect of uncertain
temperature itself, along with the derived uncertainty in Gibbs free energies, gi � T � , due to
dependence on the uncertain temperature.

The truncated stochastic expansion for the rate of progress of reaction k, Rk, in terms of
pseudospectral exponentiation operators � (K(L� is given by

Rk
� kF

k ( N

∏
i � 1

ci (M( ν *ik � kR
k ( N

∏
i � 1

ci (M( ν *,*ik (77)

At this stage, third-body efficiencies may be added pseudospectrally (Eq. 24), with Ck
� 1

for no correction and

Ck
� N

∑
i � 1

� βik ( ci � (78)

for third-body corrections with no pressure fall-off. The implementation of pressure fall-off
corrections follows in a very similar manner using pseudo-spectral operations.

The mass production rate � kgm � 3 s � 1 � of species i is now written generally as

wi
� Wi

M

∑
k � 1

νik ( Ck ( Rk (79)

where wi is a full stochastic expansion:

wi
� P

∑
k � 1

wikΨk (80)

This approach has been implemented in the form of a pseudospectral chemistry library
that accepts a local chemical state vector and computes a spectral stochastic rate-of-progress
for each reaction, based on the PC expansions for temperature and concentrations and
the parametric uncertainty associated with enthalpies of formation, activation energies,
exponents, and reaction preexponentials. This library returns a full PC expansion of the
chemical source term for each individual species.

2.3.6. Extended ODE system Returning to the governing equations for the chemical system,
we write the PC expansions for concentrations, ci, density, ρ, and temperature, T , as:

ci � t � � P

∑
k � 0

cik � t � Ψk 
 i � 1 

�
�
�!
 N (81)



Spectral stochastic uncertainty quantification in chemical systems 15

ρ � t � � P

∑
k � 0

ρk � t � Ψk (82)

T � t � � P

∑
k � 0

Tk � t � Ψk (83)

and substitute into the corresponding chemical equations.
The time-evolution of the resulting pseudospectral chemical system is governed by the

extended ODE system, for k � 0 

���
�!
 P:

dcik

dt
� Da

Wi
wik 
 i � 1 

�
�
��
 � N � 1 � (84)

dρk

dt
� Da

N

∑
i � 1 N @ 1 ) � cp ( T ��BO( � hi ( wi �QP

k

� Da
Wi

N

∑
i � 1 R W ( wi S k (85)

The new algebraic constraints derive from mass conservation for mode 0 of the expansion,
given that all higher-order modes sum to zero, since mass is conserved with zero-uncertainty.
Using the PC expansion

Yi
� P

∑
k � 0

YikΨk (86)

for Yi, the mass fraction of species i, zero-uncertainty in mass conservation implies:
N

∑
i � 1

Yi0
� 1 
 (87)

N

∑
i � 1

Yik
� 0 
 k � 1 

���
��
 P (88)

and finally, from the perfect gas state equation, where P0 is the stagnation pressure and
assumed to be constant, and uncertain,

P0
� T � ρ ( T �U) W V 0 (89)

0 � T � ρ ( T �U) W V k 
 k � 1 
��
�
��
 P (90)

These equations are closed with deterministic initial conditions:

cik � t � 0 � �XW c0
i k � 0

0 k � 1 

�
���!
 P (91)

ρk � t � 0 � �XW ρ0 k � 0

0 k � 1 

�
����
 P (92)

3. Results and discussion

3.1. Homogeneous ignition results

To demonstrate the solution of the above UQ ODE model, we focused on the
homogeneous constant-temperature ignition of a hydrogen-air mixture with a detailed
chemical mechanism [29]. Thus, we only integrate Eq. 84 along with the mass conservation
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constraints (Eqs. 87 & 88). Initial conditions are deterministic, with T = 1200K, ρ =
0.276 kg/m3, cH2 = 0 � 238 Y 10 � 5, cO2 = 0 � 119 Y 10 � 5, and cN2 = 0 � 832 Y 10 � 5. The integration
proceeds at constant T and ρ. Physical properties, including the mean values of uncertain
heats of formulation, were generated with the CHEMKIN properties database [25].

We specified two uncertain dimensions (Ndim
� 2), and ran the integration with

Nord = 3, 5, and 7. We chose parametric uncertainties that reflect experimental
estimates [27]. We model the uncertain preexponential Arrhenius rate constant for reaction
11 (HO2 + H = OH + OH) as a lognormally distributed random variable, with a median
value of 1 � 690 Y 1014 mole-cm-sec-K and a multiplicative factor of 3.0. The second uncertain
parameter is the enthalpy of OH, which we assume to have a normal distribution with a
mean given by the deterministic CHEMKIN [25] data base and a standard deviation of
0.01 kcal/mole [21, 27].

The extended system of conservation equations with pseudospectrally-generated
chemical source terms was integrated using the DVODE solver [30] with discrete numerical
Jacobians. The integration used a timestep of 2 Y 10 � 4 ms. For the complete integration, the
mean and standard deviation calculated at each Nord varied by less than 0.5%. The analysis in
this section is based on results obtained with Nord

� 5.
Figure 1 shows the mean value of H2O2 concentration vs. time for the homogeneous

ignition. Dashed lines indicate the range of resulting uncertainty with
�

σ bounds. We observe
a fast rise in both the mean H2O2 concentration and its standard deviation in the first 0.1 ms
time interval. The resulting peak in uncertainty at D 0.1 ms is a result of uncertainty in
both the Rxn.11 rate constant and in the enthalpy of OH. At later time, there is a gradual
decrease in uncertainty as the system tends towards equilibrium. We note that one expects
the rate-constant uncertainty to have no impact at equilibrium, while the enthalpic uncertainty
would be reflected in the equilibrated species mixture. This is in fact observed in the present
results as shown in Fig. 3 below. The observation of this physically expected result from the
present analysis based on truncated PC expansions provides validation of the computational
predictions and suggests the adequacy of the chosen order of the expansion for the present
problem.

Other radical species exhibit much larger uncertainties than H2O2. Figure 2 shows the
mean value of HO2 concentration vs. time, with

�
σ bounds indicated. These results exhibit

similar fast-rise in mean and standard deviation at early time, followed by a gradual decay to
some asymptotically constant value of both at later time. Note the overall magnitude of total
uncertainty in HO2. Given realistic, moderate parametric uncertainties—uncertainties that
reflect known limitations in the measurement of physical properties—the standard deviation
of the concentration reaches over 40% of the mean. We note that the uncertainty in the H2O
product (not shown) is relatively small, while that associated with some intermediate species
is evidently quite large in comparison.

A notable strength of the PC representation is that the contribution of specific parameters
can be traced through each field quantity and into the simulation results. Figure 3 breaks
down the 1st-order contribution to the variance, σ2, of the H2O2 concentration due to the two
uncertain parameters. The shaded regions indicate the 1st-order contribution of uncertainty
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Figure 1. Time evolution of the mean (solid line) and Z σ-uncertainty bounds (dashed lines)
in the concentration of H2O2.
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Figure 2. Time evolution of the mean (solid line) and Z σ-uncertainty bounds (dashed lines)
in the concentration of HO2.

from the uncertain enthalpy of formation, the 1st-order contribution from the uncertain
reaction preexponential, and the total variance calculated from the full expansion, include 2nd ,
3rd , and higher-order effects. For these two uncertain parameters, the resulting concentration
PDFs (not shown) are roughly Gaussian in form, and higher-order contributions are relatively
small. This is consistent with the above comment on the adequacy of the 5th-order truncated
PC expansion for the present problem, and the accuracy of the present results in exhibiting
the physically-expected negligible role of reaction-rate uncertainties near equilibrium. We
note that other studies, which allowed for additional uncertain parameters [21], have shown
larger contributions from higher orders. This form of analysis has great utility in larger and
more complex systems, designating where and to what extent a given uncertainty affects
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Figure 3. Decomposition of the uncertainty in the time-evolving computed variance of H2O2.

the total uncertainty in the predictions. This specifies which parameters are most impacted
by experimental limitations, and thus may be used to guide future research. Also, since
approximations and reductions are present in many chemical models, this methodology may
reveal inherent limitations of mechanisms that may not be robust predictors of concentrations
intermediate radical species.

3.2. Solvability of the pseudospectral formulation

A larger goal of this intrusive UQ construction is to construct large-scale reacting-flow
simulation codes using pseudospectral stochastic PC operations. With this in mind, the
solvability of the stiff chemistry may shed light into the numerical difficulties that may be
encounted in more complex, highly-coupled multidimensional solvers. Two related effects
are most apparent when assessing the solvability of the homogeneous ignition problem—
the ability of the intrusive polynomial chaos approach to adequately represent the evolving
probability distributions of the system variables, and the magnitude of the uncertainty.

Fig. 3.4 compares the PDFs of cHO2 expanded to third, fifth, and seventh order at
t � 3 � 6 Y 10 � 5 s, using the pseudospectral source term, in the region of maximum uncertainty.
The shape of the PDF is not skewed greatly from a Gaussian, but the standard deviation is
considerable and the coefficient of variation, C � σ  c0

i , is accordingly quite large. There are
clear discontinuities/spikes/artifacts in the PDF for Nord

� 3 (solid line), indicating that, in the
present case, third-order expansions do not adequately resolve the shape of the distribution.
PDFs at Nord

� 5 and 7 (circles and squares, respectively) show smoothly-varying nearly-
identical distributions. Evidently, a fifth or seventh-order construction is necessary for
accurate representation of the stochastic behavior in the present problem.

With the basic physical constraint of positive values for concentration, the resolution
of the PDF near zero becomes important. Recall that the reformulation represents each
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Figure 4. PDFs of HO2 concentration at t [ 3 \ 6 ] 10 ^ 5 s. The solid line represents Nord [ 3,
the circles Nord [ 5, and the squares Nord [ 7
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Figure 5. PDFs of HO2 concentration at t [ 3 \ 2 ] 10 ^ 5 s (diamonds), 3 \ 4 ] 10 ^ 5 s (circles),
3 \ 6 ] 10 ^ 5 s (squares), and 3 \ 8 ] 10 ^ 5 s (solid line). Results obtained with Nord [ 5.

random variable/process by a spectral PC expansion. While we do not discretize the
PDF itself, a poorly-resolved expansion, i.e. one in which significant energy exists in the
neglected/truncated higher order modes, will result in an unacceptable probability density.
Expansions that are poorly resolved lead to large errors in the computed solution.

Figure 3.5 compares the PDF of cHO2 at several points in the ignition process (Nord
� 5).

As seen in Fig. 3.2, during the initial ignition, total uncertainty increases rapidly, with the
standard deviation attaining a similar order-of-magnitude to the mean. When mode 1, which
here dominates the standard deviation of the distribution, exceeds 30% of the mean, a steeply-
varying PDF is required to insure no significant probability of negative cHO2 values. As
very large uncertainties develop, and σ approaches the mean, larger Nord may be needed to
compensate, and to adequately resolve the energy within the expansion. This increases the
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Figure 6. Absolute magnitude of cHO2 _ k ` modes at maximum total cHO2 uncertainty for
Nord [ 3 (diamonds), Nord [ 5 (squares), and Nord [ 7 (circles). Vertical lines separate orders
from first through seventh.

complexity and the computational effort required to solve the problem.
Figure 3.6 illustrates the magnitude of mode strengths for HO2 concentration for the PDF

at t � 3 � 8 Y 10 � 5 s, including expansions truncated at Nord
� 3, 5, and 7. Vertical bars group

the modes 2 ck 2 by order, from 1st to 7th. For Nord
� 3 and Nord

� 5, we see that some modes
within the highest order bracket are greater in magnitude than the corresponding modes for
the higher-order expansions. However, the trend of the modes in the log-linear plot indicates
convergence. In this plot, the maximum and minimum mode amplitudes for each order
correspond to modes dependent only on one of the uncertain dimensions. If we plot these
mode amplitudes vs. Nord, a roughly linear decay that suggests exponential convergence, with
the maximum amplitudes (dependent on reaction uncertainty) converging more slowly than
the minimum amplitudes (dependent on enthalpic uncertainty).

We note that the rate of decay of the energy/amplitude of the spectral modes with
increasing order is a key indicator of the stability of the time integration of the PC system.
In particular, if sufficiently large parametric uncertainties are chosen, then the growth in
amplitude of higher-order modes can lead to a failure of the time integration procedure. To
illustrate this, we performed another calculation of an extreme case. Using Nord

� 5, we set
the pre-exponential of reaction 1 (H+O2=O+OH) to be uncertain with S � 1 � 5 in addition
to the previously-specified S � 3 � 0 for reaction 11. The enthalpic uncertainty was removed,
leaving Ndim

� 2. Figure 3.7 shows the PDFs of cH2O2 at several times during the computation.
The PDFs grow rapidly in width, with the standard deviation approaching the mean and signs
of poor resolution for the PC expansions after 1 � 8 Y 10 � 5 s. Analysis of the individual PC
modes indicates that, once their decay rate with increasing order flattens, the values of the
mode amplitudes diverge rapidly and the time integration fails. In Fig. 3.8, a plot of mean
concentration and standard deviation vs. time is overlaid with individual 1st and 2nd-order
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Figure 7. PDFs of H2O2 concentration at t [ 1 \ 6 ] 10 ^ 5 s (circles), 1 \ 8 ] 10 ^ 5 s (squares),
and 2 \ 0 ] 10 ^ 5 s (diamonds).
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Figure 8. Evolution of cH2O2 (solid line), first order cH2O2 modes (circles), second-order
cH2O2 modes (triangles), and standard deviation (dashed line) vs. time. Vertical dashed lines
correspond to the timesteps illustrated in the previous figure.

mode values. Note that for this 2-dimensional PC system there are two first-order modes and
three second order modes, all of which are shown in the figure. Vertical dashed lines highlight
the three time instances referenced in Fig. 3.7. By t � 2 � 0 Y 10 � 5 s, the standard deviation has
exceeded the mean, and both 1st and 2nd-order modes are growing rapidly, resulting in failure
of the integration at t � 2 � 75 Y 10 � 5 s. We note that increasing the order of the PC expansion
merely leads to a delay in the onset of this instability.

Finally, we note that as the standard deviation increases, the behavior of the PDF tails
around ci

� 0 can become an issue. If indeed the PC-reformulated system acts upon the
full distribution of possible concentrations (as well as temperatures, densities, etc.), we
should expect that finite probabilities of unphysical negative concentrations, generated by
insufficiently resolved behavior near ci

� 0, will cause the integration to fail. This issue is



Spectral stochastic uncertainty quantification in chemical systems 22

addressed below using a model initial value problem.

3.3. Model initial-value problem

To better understand the consequences of large standard deviations relative to the mean, i.e.
a large coefficient of variation (COV), we considered a simpler case–the time integration of a
model initial-value problem based on the chaos system. Specifically, we consider the ODE:

du
dt

� g � u � � au � u � b � � u � c � (93)

with u � t � 0 � � U . This system has two attractors, at u � � b and � c. It also has a saddle
point at u � 0. Using values of the constants of b � 10, c � � 1, a � � 1, any trajectory with
U � 0 is attracted to the u � 1 limit, while U � 0 trajectories are attracted to u � � 10. A
trajectory with U � 0 remains at u � 0.

Now, allow u to be a stochastic quantity, u � ∑P
k � 0 ukΨk, using fourth-order chaos� P � 4 � , and let the constants a 
 b 
 c be deterministic as chosen. Further, assume that U is

Gaussian with mean U0 and standard deviation U1. Thus, U � U0 � U1ξ, with zero higher
order modes.

With fixed U1
� 0 � 08, consider the behavior of u0 � t � for two different values of U0

�
0 � 2 
 0 � 3. The corresponding PDFs for U are shown in Fig. 9. While both have non-zero
probability of negative values–given the infinite support of the gaussian distribution, the case
with U0

� 0 � 2 has a larger COV, with corresponding larger probability of negative U . As
Fig. 10 shows, the time evolution of u0 is drastically different for the two cases. The initial
stage of the evolution (up to a t � 0 � 6) is towards the positive attractor in both cases, with
only minor difference in the trajectories. Soon after this however, the case with larger negative
overlap is attracted towards the negative stationary point. The end result at t � 1 � 5 is that the
two cases are stationary at the two attractors.

We note of course, that there is no sampling of either PDF in the time integration
procedure. The equations integrated are the Galerkin-projected ODEs for the polynomial
chaos expansion mode strengths. These equations are representing the physical situation
accurately, thereby reflecting the increased probabilitiy of negative samples and its
consequences. Also note that, despite the small probability of negative initial values, the
mean of the PDF is completely dominated by their large magnitude as they tend towards -10,
versus the much smaller values of the samples attracted to the positive limit.

We also note that, with an alternative problem, e.g. du  dt � � 10u � u � 1 � , which has
attractors at u � 1 and � ∞, the negative overlap of the PDF of U is a source of instability, as
the negative branch of the solution tends to � ∞. The infinite well of this attractor creates a
potential source of instability, as any overlap of the solution PDF with the region u � 0 would
allow the solution to grow without bounds. A normally distributed initial condition can lead
to an infinite rate of growth of the solution if its COV is large-enough.

Moreover, note that even the stable initial conditions in this discussion are in fact unstable
if sufficiently high order is used for the PC expansion. For example, for the problem in Eq. 93,
while using a 7th-order expansion still gives the same final limit of 1.0 for u0 in the U0

� 0 � 3
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Figure 9. Two initial PDFs with U0 [ 0 \ 2, and U0 [ 0 \ 3, and U1 [ 0 \ 08 in both cases. The
PDF with the mean closer to zero overlaps the negative U region.
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Figure 10. Evolution of u for each of the initial PDFs in Fig. 25, with du b dt [ au _ u c b ` _ u c c `
as defined above. The case with the initial PDF overlapping zero is attracted to the negative
stationary point, in contrast to solution with an initial PDF that has much smaller overlap with
zero.

case, taking the order up to 11 leads to u0 heading into negative territory after first approaching
1.0. Possibly, the infinite support of the Gaussian PDF of the normally-distributed initial
condition implies that, in the limit of infinite order, any such initial condition will tend to
the negative limit. Thus, it is only the inaccuracy of the low-order expansions that prevents
this from ocurring for some small COV values ( � 0 � 08  0 � 3). Further work is necessary to
adequately examine this conjecture.

It is also noteworthy that this same dependence on PC order and COV is observable with
an initial condition U that is lognormally distributed. Thus, for example, we find that with
a median U of 0.3, and a multiplicative factor SU

� 4 � 5, while both 4th and 7th-order reach
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Figure 11. Evolution of u for a lognormal initial condition with increasing polynomial chaos
order Nord.

the positive limit and stay there within the 1.5 time limit, using 11th-order chaos we find that
u0 leaves the 1.0 stationary point at around t � 1 � 4 and heads downward. Further, going to
SU

� 5 � 4, we find that this occurs earlier at t � 1, and u0 reaches the negative stationary point
by t � 1 � 5. Moreover, with SU

� 9, even the 4th-order solution leaves positive territory around
t=0.5, and decreases towards -10. While this may seem surprising at first glance, given that
the initial PDF ought-not to have any negative part, the explanation is based on the inadequate
resolution of this and later PDFs by the truncated PC expansion. In the limit of very large
SU  U0, or very low order, the truncated PC expansion for the lognormally distributed U
exhibits an actual PDF that does have a finite probability of negative values. For example,
for SU

� 9, the 4th-order PDF of U has significant probabilities of negative values. This
is not so at the lower SU values (SU

� 4 � 5 � 5 � 4), where the initial PDFs are indeed well
resolved with the PC expansions with order C 4. However, the time integration procedure
with the 11th-order expansion leads to finite probabilities of negative u � t � at early time, which
evidently dominates the solution, driving u0 to the negative limit. In fact, the results shown in
Fig. 11, for SU

� 6, illustrate this situation very clearly. The results show that increasing the
PC order from 4 to 7 leads to the stabilization of the solution at the positive attractor (at least
up to t � 2 � 0). On the other hand, increasing the order further, to 11, leads back to an early
departure of the solution from the positive limit.

Finally, it is important to examine clues for impending instability in the time integration
due to such negative tails. Examining the system jacobian eigenvalue evolution does not give
immediate clues to stability, as both the finite and infinite attractor problems exhibit rapidly-
growing positive maximum eigenvalues for CU � 0 � 3 � 0 � 4. Additional analysis needs to be
done to establish metrics for judging stability. This is investigated in the sections below.
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3.4. PDF inversion

An interesting approach for detecting that a stochastic quantity u has a finite probability
of being zero is to evaluate its stochastic inverse and examine the condition number of the
matrix involved. This reveals one possible pathway to numerical difficulties—for example
when part of the PDF for density, ρ, closely approaches zero, can we then expect to evaluate
the stochastic inverse T � 1  ρ? In fact, this effect is observed during hydrogen-air ignition
studies—the T expansion resulting from an inversion of density contains a small but finite
probability of extremely large values. We present here the means of doing this check.

Note that we use a linear system solve to find the stochastic inverse, as outlined in
[20, 31]. We outline that procedure here in order to explain the zero-crossing detection
strategy. Thus, first, define the PC expansion for the random quantity u, and its inverse v,

u � P

∑
i � 0

uiΨi (94)

v � 1
u
� P

∑
j � 0

v jΨ j � (95)

Then, since w � uv � 1, we express the PC expansion for the product,

w � P

∑
q � 0

wqΨq
� uv � P

∑
j � 0

P

∑
i � 0

uiv jΨiΨ j � (96)

Using Galerkin projection, we express the coefficients of the expansion for w in terms of the
coefficients ui and v j,

wk
� P

∑
j � 0

P

∑
i � 0

uiv j

� ΨiΨ jΨk �� Ψ2
k � � P

∑
j � 0

P

∑
i � 0

uiv jCi jk
� δk0 (97)

But, since wk
� δk0, we have

P

∑
j � 0

P

∑
i � 0

uiv jCi j0
� 1 (98)

P

∑
j � 0

P

∑
i � 0

uiv jCi jk
� 0 k � 1 
 	
	�	 
 P (99)

This is a � P � 1 � -dimensional system of linear equations for v j, j � 0 
 	
	
	 
 P, i.e.,

Av � b (100)

where

Ak j
� P

∑
i � 0

uiCi jk k 
 j � 0 
 	
	
	 
 P (101)

and

bk
� δk0 
 k � 0 
 	
	
	 
 P (102)

Note that Ak j is simply a linear combination of the modes of u, and thus easily evaluated.
We can thus compute the condition number of A (the ratio of its maximum and minimum
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eigenvalues). Condition numbers of order 1 indicate a readily-invertable distribution,
while larger condition numbers reflect potential difficulties with the inversion, and potential
incidences of zero crossing in the PDF of u.

3.5. Detecting negative PDF tails

The stochastic natural logarithm function can be used to detect negative values in tails of
distributions. Let u be a normal distribution, u � N � σ  CU 
 σ � , then fix σ and vary the COV ,
CU . For each such choice of u, evaluate the error E given by

E � 2�2 u � exp � ln � u ���O2�2 ∞ (103)

The variation of E with COV is shown in Fig. 3.5. The error is small and smoothly varying
for CU

� 0 � 36. It also decays with decreasing CU . For CU � 0 � 36, however, the error is large,
roughly fixed, and non-smooth. At large COV s, the PDF of u is wide enough to have 3σ � µ,
leading to finite probability of negative u values. Clearly, the ln function evaluation with
polynomial chaos will fail when the PDF has a significant negative tail. These results suggest
the potential utility of the stochastic ln function for monitoring the solution during a time
integration procedure, and providing early detection of signs of trouble. This information
could be used to periodically filter the solution, sacrificing some measure of accuracy for
stability.

4. Conclusions

We have implemented a pseudo-spectral stochastic uncertainty quantification scheme in
the context of detailed chemical kinetics, allowing for uncertainties in thermodynamic
properties and chemical rate constants. In this formulation, uncertainties are represented
as stochastic variables, and are propagated accordingly through the computational model
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using a polynomial chaos representation of simulated quantities. This is based on the use of
spectral polynomial chaos expansions in terms of Hermite polynomial functions of Gaussian
random variables for both uncertain parameters and solution field quantities, and on a Galerkin
projection of the original deterministic governing equations onto the corresponding equations
that govern the evolution of the spectral mode strengths of the unknowns. We outlined
means of handling strictly positive lognormally distributed parameters, and of incorporation
of equilibrium rate constants, reverse reactions, third body and pressure-falloff corrections, to
arrive at a fully-reformulated ODE system for the chemical system.

We demonstrated this construction using a H2-O2 system for two uncertain parameters
with prescribed uncertainties. The model amplified this parametric uncertainty considerably
in the concentrations of some intermediate radicals. We outlined the strength of the present
construction in providing information on the relative contributions of different parameters
to the uncertainty in the solution of given field variables. These results suggest that the
amplification of small parametric uncertainties may call into question the robustness of the
chemical model for predicting certain radical species, and this observation highlights the
importance of including uncertainty quantification in the computation. Moreover, these results
are useful in pointing out specific rate constants where additional experimental measurements
may assist in reducing uncertainty in model predictions.

A full, multiparameter analysis would include known uncertainties in all empirically-
determined enthalpies of formation and reaction rate preexponentials. Future studies
using this method will investigate the cumulative effects of such multi-parameter systems,
particularly those including transport, focusing on the higher-order effects caused by the
inherent coupling of the stochastic variables. This formulation preserves this non-linear
coupling.

Limitations of the method include concerns about the resolution and adequate
representation of the stochastic space when handling large uncertainties. For example, the
constraint c j � 0 within the chemistry integration may require high-order expansions
(representing skewed or sharply-defined PDFs) to ensure stable expansions with a Hermite-
Gaussian basis. Generally, the spectrum of “energy” in the polynomial chaos modes indicates
impending trouble when the amplitudes of the high order modes grow, approaching those
of low order modes. Resulting unphysical PDFs or poorly-resolved expansions may be
corrected via the use of higher-order expansions, with the corresponding computational
expense of solving a greater number of simultaneous equations. Our initial-value-problem
model problem study suggests however that high-order, by itself, may not be sufficient for
stability. Filtering of the PC expansions to decrease the amplitude of higher-order modes,
and/or eliminate unphysical PDF tails, may be also necessary to stabilize the computations.
In this regard, we presented two possible “error” measures, based on algebraic manipulations
of the polynomial chaos modes, that may be used to infer impending signs of trouble in the
PDF of a given variable. More work is required in this regard.
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