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Abstract Monofins provide swimmers with an efficient al-
ternative to the standard pair of fins. For example, all short
and long distance human swimming records have been es-
tablished using monofins. Current monofin design is mostly
empirical, so the objectives of this work are to analyze monofin
propulsion through coupled fluid-structure simulation and
to optimize its flexural stiffness distribution. The optimiza-
tion process maximizes the propulsive power provided by
the monofin with a constraint on the total expended power.
In order to be able to carry out the optimization of the cou-
pled fluid-structure system which is numerically costly to
evaluate, the following simplifications are proposed: (i) a
two-dimensional unsteady, inviscid and incompressible fluid
flow is considered; (ii) the swimmer is composed of lin-
ear articulated segments, whose kinematics is imposed and
identified from experimental data; (iii) the monofin is rep-
resented by rigid bars linked by torsional springs. For var-
ious allowable swimmer powers optimal 2D stiffness dis-
tributions are obtained using the Globalized and Bounded
Nelder-Mead algorithm. Finally, an identification procedure
is described to translate the optimal 2D stiffness distribu-
tions into 3D thickness profiles for a given monofin plan-
form shape.
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1 Introduction

Monofins already provide the most efficient way of swim-
ming for human beings. However, it is expected that fur-
ther progress can be achieved because today’s monofin de-
sign is empirical and studies in aquatic locomotion modes
and oscillating hydrofoils show that more efficient swim-
ming systems exist. Fish like tuna, mackerel, sharks and ma-
rine mammals have propulsive efficiencies greater than 90%
at high swimming speed in calm waters (Sfakiotakis et al
(1999)). Similar efficiencies have been observed for arti-
ficial oscillating hydrofoils (Pedro et al (2003); Anderson
et al (1998)). Previous works have been devoted to describ-
ing the physics and physiology of fin-swimming (Zamparo
et al (2002); Baly et al (2001)). The objective of the current
work is to propose a rationale for designing monofins.

Fig. 1 Carbon monofin (Breierc©).

The simulation of the swimmer and monofin system is
very complex: the flow is unsteady, it interacts with the fin
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which is a composite structure in dynamic motion with large
displacements. There are many works related to the fluid-
structure interaction and its impact on structural design (e.g.,
Kvamsdal et al (1999)), but the numerical costs of typical
fluid-structure models do not allow their optimization which
requires a large number of evaluations.

In order to carry out the monofin optimization, some
model simplifications are made in the first part of the article:
(i) a two-dimensional unsteady, inviscid and incompressible
fluid flow without separation is assumed; (ii) the swimmer is
represented by linear articulated segments whose kinematics
is identified from experimental swimmer data and imposed;
(iii) the monofin is represented by rigid bars linked by tor-
sional springs with large rotations allowed. Due to the small
monofin thickness and flow features, the sheet vortex fluid
model presented in Le Maı̂tre et al (1999) is used.

In the second part of the article, the propulsive power
provided by the monofin is maximized with a constraint on
the maximum total power expended by the swimmer. The
design variables are the spring rigidities. The optimization
problem is solved by the Globalized and Bounded Nelder-
Mead (GBNM) algorithm (Luersen et al (2004)).This two-
dimensional swimmer-fin model was first introduced and pre-
liminary optimization results given in Luersen et al (2003).

The flexural stiffness distribution obtained from the two-
dimensional optimization is finally translated into a three-
dimensional monofin (cf. Fig. 1). The mapping can be seen
as an identification procedure where the “experience” is a
2D bars system whose behavior is approximated by a 3D
finite element model of the fin. The equivalence between
the two models can be sought in terms of static behavior,
dynamic behavior, or a mix of static and dynamic behav-
iors. The advantages of static equivalence is that the load
cases can be taken from the 2D flow simulation and large
displacements analyses are available. However, it neglects
the fin inertia. On the contrary, the modal dynamic identi-
fication accounts for both flexural and inertial terms but it
is, in essence, a small displacements analysis. The 3D thick-
ness distribution is found by minimizing an error function
between the static and/or modal response of the 2D and 3D
monofins. The GBNM minimization algorithm carries out
the identifications.

2 Two-dimensional modelling of the system

A two-dimensional model of the swimmer-fin system is pro-
posed which is based on the following assumptions. The
Reynolds number for the system is of the order of 106, so
the viscosity is neglected. By further neglecting obstacles
thickness, flow separation and water compressibility, the un-
steady vortex based flow model of Le Maı̂tre et al (1999)
can be used: the velocity field is obtained by the superposi-
tion of a uniform fluid flow and a field induced by vortices
emitted at the fin̂A´s trailing edge. The vortex intensities are
calculated at each instant so that the following hold: (i) the
flow remains attached along the obstacle; (ii) the flows from

the upper and the lower surfaces join smoothly at the trailing
edge (Kutta condition); (iii) the total circulation is constant.
The advantage is that only the solid boundary and the wake
are discretized, as opposed to meshing the whole domain, so
that computer time is saved.

The swimmer is represented by 4 segments: the arms, the
torso, the thighs and the tibias. The monofin is modelled by
6 rigid bars articulated by torsional springs with large rota-
tions allowed (Fig. 2). All bars have equal and constant lin-
ear mass density. From the analysis of a monofin swimmer
video the swimmer movement is approximately segment-
wise harmonic:

y1(t) = Yc
1 +Y1 sin(2π f t) , (1)

θi(t) = Θ
c
i +Θi sin(2π f t−φi) , (2)

wherey1 is the vertical displacement of the hand,θ1 is the
slope between the horizontal and the arms,φ1 is the phase
angle between the vertical hand movement and the arm rota-
tion, θi andφi , i = 2,5 are the angles and the phases between
the segments (i − 1) andi, respectively. The parameters of
Eqs. (1) and (2) (the amplitudesY1 andΘi , the mean val-
uesYc

1 andΘ c
i , the phase anglesφi and the frequencyf ) and

the mean swimmer speed (considered to be the free-stream
speed)U∞ are identified from measured vertical displace-
ments of the hand, neck, shoulder, elbow, hip, knee, ankle
and toe of a sprint swimmer. The following values are ob-
tained (Luersen et al (2003)):U∞ = 3.0 m/s, Y1 = 0.07m,
Yc

1 = 0.0 m, Θ1 = 3.4◦, Θ c
1 = −1.6◦, φ1 = −222.6◦,

Θ2 = 12.0◦, Θ c
2 = 1.6◦, φ2 = − 152.8◦, Θ3 = 20.0◦,

Θ c
3 = − 10◦, φ3 = 17.2◦, Θ4 = 14.0◦, Θ c

4 = 14.0◦,
φ4 = 17.2◦, Θ5 = 16.0◦, Θ c

5 = −20.0◦ andφ5 = 107.2◦.

torso thigh tibia

torsional spring C

swimmer fin

i
arm

2

4

3
1 θ1

θ2
5

M i

y5F
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5y

U 8 (fluid)

x

M

Fig. 2 Swimmer and monofin representation.

The displacements of the first monofin bar (θ5(t), x5(t)
and y5(t)) are imposed because they follow the feet. The
forces distributed over the fin are obtained by means of a
coupled fluid-structure calculation. The unknowns of the prob-
lem are the orientations, the angular velocities and the an-
gular accelerations of the monofin’s bar joints (θi(t), θ̇i(t),
θ̈i(t), i = 6,10), and the efforts at the point 5 (which is ap-
proximately the swimmer’s ankle),Fx5(t), Fy5(t), M5(t). The
monofin dynamic equilibrium equations are solved by the
Newmark time integration scheme (Géradin and Cardona
(2001)). At each iteration, the system of non-linear equa-
tions is solved using a mixed Newton-Raphson/GBNM scheme.
The GBNM algorithm (see paragraph 4.2 and Luersen et al
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(2004)) is employed to minimize the residue of the equations
when the Newton-Raphson iterations have not decreased the
residue. A visualization of the flow, swimmer and monofin
is given in Fig. 3.

Fig. 3 Flow, swimmer and monofin visualization. Continuous trace,
the obstacle;×, the wake particles;→, the relative velocity of the fluid.

3 Optimization problem formulation

As the majority of the thrust is produced by the monofin,
the purpose of the optimization is to maximize the propul-
sive power provided by the monofin with a constraint on the
maximum total power expended by the swimmer at the fin.
The time-averaged propulsive power is defined as,

P̄f x =
1

Tf −Ts

∫ Tf

Ts

∫ Ls

0
fx(s)|U∞| ds dt , (3)

and the time-averaged power supplied by the fluid to the fin
is,

P̄f =
1

Tf −Ts

∫ Tf

Ts

∫ Ls

0
( fx(s)(ẋ(s)+ |U∞|)+ fy(s)ẏ(s)) ds dt,

(4)

whereU∞ is the swimmer’s mean forward speed, ˙x andẏ are
the velocity components of the fin in a stationary reference
system with respect to the fluid speedU∞, fx(s) and fy(s) are
the fluid forces per unit length over the fin at the fin natural
coordinates, Ls is the monofin’s length,Ts andTf are the
starting and final calculation times. Energy transmissions on
the swimmer’s body are neglected in comparison with the
fin, consequentlȳPf is considered to be the power provided
to the swimmer. For a swimmer going up-stream,P̄f x and
P̄f , calculated by Eqs. (3) and (4), are negative. Thus, the
objective function to be minimized is̄Pf x with a lower bound
on the total power̄Pf . The design variables are the torsional

Table 1 Effects of varying the monofin’s lengthLs on the power bal-
ance.

Ls (m) 0.5 0.72 1.0

P̄f x (W) −527.62 −809.67 −1147.28
P̄f (W) −1153.30 −1369.88 −1747.60

νP 0.457 0.591 0.656

Table 2 Effects of changing all stiffness values on the power balance.

Ci , i = 1,5 300 500 1000 5000 10000 15000
(Nm/rad)

P̄f x (W) −780.38 −749.39 −809.67 −1052.15 −952.02 −846.08
P̄f (W) −950.34 −1008.32 −1369.88 −3917.57 −4955.79 −5270.33

νP 0.821 0.743 0.591 0.269 0.192 0.161

stiffnessesCi . The optimization problem is formulated as,
min

Ci

P̄f x ,

such that,
P̄min ≤ P̄f ,
Cmin

i ≤ Ci ≤ Cmax
i , i = 1,5 .

(5)

4 Stiffness optimization results and discussion

4.1 Parametric studies

In order to have an intuitive comprehension of the system
behavior, parametric studies are now described where the
monofin’s length and spring stiffnesses change. In the first
study, the monofin’s lengthLs varies, while rigidities are
fixed atCi = 1000Nm/rad. Table 1 presents the effects
on P̄f x, P̄f , and the power efficiencyνP = P̄f x/P̄f . Increasing
Ls improvesP̄f x andνP, at the expense of a higher̄Pf . From
now on, the monofin’s length is set to 0.72 m, which is the
length of the monofin used by the swimmer whose kinemat-
ics was identified.

Tables 2 and 3 summarize the effect of the rigiditiesCi on
P̄f x, P̄f andνP. In Table 2, all the stiffnesses are changed to-
gether. In Table 3, a reference case whereCi = 1000Nm/rad,
i = 1,5, is perturbed by setting one of theCi to 2000Nm/rad.

From these studies, the following pieces of information
are obtained:

– Higher fin stiffness implies more power expended by the
swimmer. The effect on propulsive power is not monotonous:
P̄f x first increases and then decreases withCi ;

– Moving the higher stiffness near the leading edge in-
creases both̄Pf x andP̄f while it decreasesνP;

– The efficiencyνP is higher for lower fin stiffnesses;
– The propulsive power̄Pf x and the total power̄Pf are

more sensitive to spring stiffnesses near the fin’s lead-
ing edge than near the trailing edge.
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Table 3 Effects of changing one spring stiffness.

C1 1000 2000 1000 1000 1000 1000
C2 1000 1000 2000 1000 1000 1000
C3 1000 1000 1000 2000 1000 1000
C4 1000 1000 1000 1000 2000 1000
C5 1000 1000 1000 1000 1000 2000

P̄f x (W) −809.67 −927.97 −832.36 −789.65 −790.545 −804.12
P̄f (W) −1369.88 −1748.94 −1512.46 −1382.90 −1354.35 −1362.15

νP 0.591 0.531 0.550 0.571 0.584 0.590

4.2 Optimization

The optimization problem (Eq. (5)) is solved by means of the
Globalized and Bounded Nelder-Mead algorithm (Luersen
et al (2004)). The GBNM is a local-global optimization method
based on probabilistic restart. Local searches are performed
by an improved Nelder-Mead algorithm (Nelder and Mead
(1965)) where design variables are continuous and can be
bounded, inequality constraints are taken into account by
adaptive penalization, and some search failure cases (e.g.
simplex degeneracy) prevented. The GBNM does not need
gradient calculation.

The optimization problem is solved for three limits on
the swimmer’s total power,̄Pmin =−1400,−2000 and−3000W.
As a comparison, the power measured on average distance
swimmers in di Prampero et al (1974) was about 1400W.
The higher limits in the second and third cases account for
the shorter distance and the 2D model that overestimates ef-
forts (the fluid cannot go around the sides of the obstacle and
there is no flow separation). The fin rigidities are bounded
by:Cmin

i = 300Nm/rad andCmax
i = 15000Nm/rad, i = 1,5.

Figure 4 shows the stiffness distributions for each optimiza-
tion problem and Table 4 presents the associated power bal-
ances. The optimal stiffness distributions are tapered from
the leading to the trailing edge. Changes in swimmer total
power affect mainly the fin near the leading edge while low
stiffness are always optimal near the trailing edge. As will
be seen in the final monofin design (Section 6), this opti-
mization result suggests an increased flexural stiffness near
the leading edge. Figure 5 shows the vertical positions of the
fin’s leading and trailing edges as a function of time for the
optimal monofin when̄Pmin =−2000W.

Table 4 Power balances for optimal stiffness distributions.

P̄min (W) −1400 −2000 −3000

P̄f x (W) −973.15 −1129.01 −1208.37
P̄f (W) −1399.99 −1999.54 −2988.16

νP 0.695 0.565 0.404
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Fig. 4 Optimal stiffness distributions.
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Fig. 5 Evolution of the vertical positions of the fin’s leading and trail-
ing edges (LE and TE) for the optimal monofin under the constraint
P̄min =−2000W.

5 Translation into a 3D structure

The stiffness distribution obtained from the previous two-
dimensional optimization is now translated into a three-dimensional
structure. The mapping can be seen as an identification pro-
cedure where the “experience” is a 2D bars system whose
behavior is approximated by a 3D finite element model of
the fin. In its most general statement, this identification prob-
lem is ill-posed since the 3D system has more degrees of
freedom than its 2D counterpart. Many combinations of shape
and thickness distribution can represent the 2D monofin. In
practice, however, the planform shape of the monofin is dic-
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tated by manufacturing (cost of molds) and marketing con-
siderations which has yielded forms that mimmick marine
mammals (cf. Fig. 1). Once the fin planform shape is given,
the spring stiffnesses can be mapped into a fin thickness dis-
tribution. Because the fin is manufactured using composite
prepreg layup, the thickness is kept constant spanwise and
varies chordwise at ply drops. The equivalence between the
two models can be sought in terms of static behavior, modal
behavior, or a mix of static and modal behaviors. The ad-
vantages of the static equivalence is that large displacements
analyses may be available. However, it neglects the fin iner-
tia in comparison to water inertia and fin flexural stiffness.
On the contrary, the modal dynamic identification accounts
for both fin inertia and flexural stiffness but it is, in essence, a
small displacements analysis. Furthermore, 3D non-bending
modes have no pendant in the 2D system, and higher natural
bending frequencies are far away from the frequency of the
imposed movement. Hence, the first natural bending mode
is more relevant than other natural bending modes. For these
reasons, only the first natural mode, which has empirically
been found on the monofin to consistently be bending, is
considered. The 3D thickness distribution is found by mini-
mizing

J = αJstatic+(1−α)Jf req , (6)

where,

Jstatic =

NCP
∑

i=1
((ui−ũi)2+(vi−ṽi)2)

NCP
∑

i=1
(u2

i +v2
i )

and

Jf req = |w2
1−w̃2

1|
w2

1
.

(7)

α is a weight factor between 0 and 1, that balances contri-
butions from static and modal criteria,(ui ,vi) are the tar-
get displacements at the bar joints of the simplified model,
(ũi , ṽi) are the displacements at theNCPcorresponding con-
trol points of the 3D finite element model,w1 is the target
first natural circular frequency of the simplified model and
w̃1 is the first natural circular frequency of the finite element
model.

The 3D fin is analyzed with a finite element model which
relies on solid elements improved for thin structures (Lemosse
and Dhatt (2000)). The parameterization of the fin is de-
scribed in Fig. 6.

The final thickness distribution is identified by solving,
min

hi

J ,

such that,
hmin

i ≤ hi ≤ hmax
i , i = 1,6 and

hi ≤ hi−1 , i = 2,6

(8)

where the thicknesseshi are bounded byhmin
i = 1.5×10−4 m

andhmax
i = 2×10−2 m, i = 1,6. The constraintshi ≤ hi−1,

i = 2,6, are handled by reordering the variableshi in the
finite element (FE) analysis but keeping them unordered in
the optimization. It was observed on the current problem that
this reordering is more efficient than the adaptive penaliza-
tion of the GBNM optimizer.

h2 h3 h4 h5 h6
h1

y

x

(a)

0 0.12 0.24 0.36 0.48 0.6 0.72

0

0.1

0.2

0.3

0.4

x  (m)

z 
 (

m
)

symmetry 

(b)

Fig. 6 Fin parameterization: thickness profile (a), half-planform shape
and finite element mesh (b). The dots represent theNCPpoints where
Jstatic is evaluated.

6 Identification results and discussion

Firstly, whenJ = Jstatic (α = 1), the influence of the load
cases and the small or large displacements analyses are de-
scribed. Three different vertical load cases are tested, as sketched
in Fig. 7. It should be noted that there are two necessary con-
ditions forh∗ = argminJstatic to be unique: 1) the equilibrium
relative angles should be non-null (see Appendix A); 2) there
should be at least as many control points,NCP, as there are
design variables (6 here), otherwise many combinations of
design variables may produce the same displacements at the
control points.

Secondly, the difference between minimizingJstatic and
Jf req is exhibited.

Finally, the problem is solved for a mixed static and modal
criterion (α = 0.5).

The GBNM algorithm is used to solve problem (8). In
order to protect the final design found in this work, a material
description is intentionally left out and the ply thicknesses
are normalized.
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1p
(a)

F 2
(b)

p3

p3

(c)

Fig. 7 The load cases considered for the thickness identification.

6.1 Static small displacements formulation

First, a static analysis procedure (α = 1 in Eq. 6) under small
displacements is carried out. The three load cases of Fig. 7
are tested settingp1 = 4.0875 N/m, F2 = 0.73575N and
p3 = 4.0875N/m. The identified thicknesses obtained for
this formulation are presented in Fig. 8. For the load cases
considered, it can be noted that the thickness distributions
are very close, the main difference being a 2.5% variation
in h2 value. Figure 9 shows the deformed positions of the
simplified 2D bars model and the mid-plane symmetry line
(z= 0) of the FE model built using the thicknesses identified
under load case 1.

6.2 Static large displacements formulation

The three load distributions used in the small displacements
identification are kept but the intensities are six times higher
in order to generate a large displacements problem:p1 =
24.525N/m, F2 = 4.4145N andp3 = 24.525N/m.

The identified thicknesses are presented in Fig. 10. For
the load cases considered, it can be noted that thickness dis-
tributions are close, the main difference being a 9% variation
in theh2 value. Figure 11 shows the deformed shape of the
bars model and the mid-plane symmetry line (z= 0) of the
FE model built using the identified thicknesses under load
case 1.

Table 5 shows the first natural frequency of the 3D fin for
static formulation solutions. The reader should keep in mind
that frequencies are not accounted for in the static identifica-
tions. The difference iñf1 is less than 0.5% and 1.8% among

1 2 3 4 5 6
0

0.25

0.5

0.75

1

Thickness reference number (cf. Fig. 6(a))

N
or

m
al

iz
ed

 th
ic

kn
es

s

Initial distribution
Load case 1
Load case 2
Load case 3

Fig. 8 Normalized identified thickness distributions for small dis-
placements formulation.

0 0.12 0.24 0.36 0.48 0.6 0.72
0

0.01

0.02

0.03

0.04

x,  m

y,
  m

FE initial solution
FE final solution
2D bars model

Fig. 9 Deformed shapes comparison for small displacements formula-
tion, load case 1.

small and large displacements solutions, respectively. For all
static formulations it is less than 3.5%.

It is observed that for the static small displacements for-
mulation the load case influence is very small. For the large
displacements procedure there is a higher difference among
the results obtained with different load cases. Probably be-
cause in a large displacements (geometrically non-linear) FE
analysis the displacements are stress dependent, and differ-
ent load cases generate different state of stresses. The solu-
tions in small and large displacements are close, with large
displacements solutions being thicker near the monofin’s lead-
ing edge (see Fig. 13). This is explained by the fact that
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Table 5 First natural frequency (̃f1 = w̃1
2π

), in hz, for static formulation
solutions.

Load case Small displacements Large Displacements

1 2.4842 2.5584
2 2.4777 2.5137
3 2.4720 2.5208

large displacements analysis generates larger vertical dis-
placements in the clamped region.

1 2 3 4 5 6
0

0.25

0.5

0.75

1

Thickness reference number

N
or

m
al

iz
ed

 th
ic

kn
es

s

Initial distribution
Load case 1
Load case 2
Load case 3

Fig. 10 Normalized identified thickness distributions for large dis-
placements formulation.

6.3 First natural frequency formulation

In this identification procedure, only the first natural fre-
quency is considered (α = 0 in Eq. 6). The first natural fre-
quency of the 2D system isf1 = w1

2π
= 1.5400 hz. It was

numerically observed that this formulation presents many
solutions that are very close, i.e., many thickness distribu-
tions correspond to the frequencyf1. Figure 12 shows the
solutions found by GBNM optimization algorithm having
a deviation smaller than 1× 10−4 hz, and the correspond-
ing modes, in a single run of 1500 analyses. Note that the
GBNM algorithm has a restart procedure which permits to
locate different local optima in a single run.

There are several solutions going from highly tapered
to uniform thickness. The maximum amplitude is at trail-
ing edge for all solutions. The maximum curvature changes,
moving from the clamped region for Solution 1, towards the
trailing edge for Solutions 2 and 3, respectively.

0 0.12 0.24 0.36 0.48 0.6 0.72
0

0.05

0.1

0.15

0.2

x  (m)
y 

 (
m

)

FE initial solution
FE final solution
2D bars model

Fig. 11 Deformed shapes comparison for large displacements formu-
lation, load case 1.

6.4 Mixed formulation

In order to take into account both static and dynamic behav-
iors of the monofin, a mixed criterion (α = 0.5 in Eq. 6) is
used. For the static analysis, only load case 1 under small
displacements is considered since load cases do not gener-
ate different solutions (at the condition that the equilibrium
angles are non-null, cf. Appendix A), and the discrepancies
between large and small displacements solutions are negli-
gible.

Figure 13 compares solutions to the mixed, the static
linear (small displacements andα = 1), and the static non-
linear (large displacements andα = 1) problems. Figure 14
shows the deformed shapes of the bars model and the mid-
plane symmetry line (z= 0) of the FE model built with the
identified thicknesses. For the mixed formulation solution,
the first natural frequency of the finite element model isf̃1 =
w̃1
2π

= 2.2115hz.
In comparison to the static analysis formulations, mate-

rial is removed from the clamped region and added at the tip.
This provides lower first natural frequency, which is closer
to the 2D model. This is traded against a slight departure
from the targetted static deformed shape.

As can be seen in Fig. 13, every optimized profile ad-
vocates an increased thickness near the leading edge and a
thinner trailing edge area, in comparison to a state of the art
design (a commercialized Breier’s monofin).

7 Conclusion

A strategy for optimizing a swimming monofin has been pre-
sented. It is based on the optimization of a simplified two-
dimensional swimmer-fin-fluid model followed by a map-
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Fig. 12 Normalized identified thickness distributions for first natural
frequency formulation (a) and corresponding modes, normalized by
the maximal vertical displacement (b).

ping of the result into a three-dimensional structure. The
two-dimensional model consists of an unsteady vortex based
fluid model in dynamic equilibrium with a bar system repre-
senting the fin. It is numerically efficient and can be included
into an optimization loop. The flexural distribution over the
bar system is optimized by maximizing the propulsive power
with a bound on the total power. The optimal stiffness distri-
butions are tapered from the leading to the trailing edge.

The solution has then been translated into a 3D monofin
structure. The shape and the material of the monofin are
fixed by manufacturing constraints. The thickness distribu-
tion is identified to be statically and/or dynamically equiva-

1 2 3 4 5 6
0

0.25

0.5

0.75

1

N
or

m
al
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ed

 th
ic

kn
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s

Thickness reference number

Static small disp.
Static large disp.
Mixed (static/modal)
Breier design

Fig. 13 Comparison among the three identification formulations and
the Breier’s monofin design.

0 0.12 0.24 0.36 0.48 0.6 0.72
0
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0.04

x,  m

y,
  m

FE initial solution
FE final solution
2D bars model

Fig. 14 Deformed shapes comparison for mixed formulation, load
case 1.

lent to the optimized 2D system. The influence of the various
formulations on the final thickness distributions have been
studied.

It is recommended to choose the mixed static/dynamic
formulation when translating a 2D fin design into 3D. In-
deed, the static and dynamic formulations do no yield the
same designs. In terms of static analysis, a small displace-
ments finite element model is sufficient. It is observed that
small and large displacements formulations do not present
significant design differences. Moreover, when mixed for-
mulation is considered, a highly accurate static analysis is
not essential because static and dynamic equivalences be-
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tween the 2D and 3D models are traded-off, so that there is
no longer a precise deformed shapes match.

In both the optimization and identification steps, the GBNM
algorithm has performed the minimizations.
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A Flexural stiffness identifiability

When choosing the load cases under whichJstatic is calculated (Eq. (7)),
care should be taken to guarantee that the optima are locally unique
(local identifiability property). In this regard, it is convenient and suffi-
ciently descriptive to study under which conditions on the loadsFi the
2D bars system of Fig. 15 has a unique set of stiffnessesCi associated
to an equilibrium positionθ ∗

i , i = 1,n.

C2

Cn

θn

F1

Fn

θ2

θ1

C1

F2

y

x
Fig. 15 2D bars system. All bars have lenghtl , Ci is the stiffness of the
i-th joint, the loadsFi are vertical.

The equilibrium equations of the system are,
C1θ1 =lF1 cosθ1 + lF2(cosθ1 +cos(θ1 +θ2))+ · · ·+

+ lFn(cosθ1 + · · ·+cos(θ1 + · · ·+θn))
. . .

Cnθn =lFn cos(θ1 + · · ·+θn) ,

(9)

or,

hi(θ1, . . . ,θn) = 0 , i = 1,n . (10)

Let θ ∗
i , i = 1,n, satisfy the equilibrium equations (10). To see how

a change inCi ’s affects the equilibrium of the system, a first order
approximation to thehi ’s is written atθ ∗,[

∂h
∂C

(θ ∗)
]

∆C = 0 , (11)

where components of the Jacobian matrix are, in general,[
∂h
∂C

(θ ∗)
]

i j

=
∂hi

∂Cj
(θ ∗) =

dhi

dCj
(θ ∗)+

n

∑
k=1

∂hi

∂θk
(θ ∗)

∂θk

∂Cj
(θ ∗) . (12)

Cases of interest are the problematic ones where, aroundθ ∗
i , a

change inCi ’s induces no change in the equilibrium, i.e., cases where
there are an infinite number ofCi ’s associated to the same deflected
shapeθ ∗ (sameJstatic). At such non-identifiable points, by definition,

∂θk

∂Cj
(θ ∗) = 0 (13)

and the Jacobian has null eigenvalues whose associated eigenvectors
(stiffness change∆C) induce no variation of the equilibrium. When
(13) holds,[

∂h
∂C

(θ ∗)
]

i j

=
∂hi

∂Cj
(θ ∗) = θ

∗
i δi j ,

whereδi j = 1 if i = j ; δi j = 0 otherwise.

(14)

This establishes that the Jacobian eigenvalues are the equilibrium
angles. Local non-identifiability occurs when some of the equilibrium
angles are null, which is intuitive since the associated springs have no
action. Two typical scenarii where someθ ∗

i are null are depicted in
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θ   = 04

C   non identifiable4

F

(a)
F 4

F 3

3C   non identifiable
θ   = 03

θ 1 2θ θ 3

θ 1 θ 2 θ 3 θ 2 θ 3θ 1 θ 4

cos (F3 + ) =+

= F4( cos ( + + ) + cos ( + + + ))
(b)

Fig. 16 Examples of loads such that the flexural stiffnesses are not
identifiable, (a) the tip is not loaded, (b) moments cancel at joint 3.

Fig. 16, first when the tip of the system is not loaded, then when the
moments cancel at a joint.

Besides the load case, we note, without formal proof, that the con-
trol points used to calculateJstatic should be numerous and well spread
on the system in order to guarantee the uniqueness of arg min

C or h
Jstatic.

As a counter-example (see Fig. 17), if there is only a control point at
the tip with a target displacement(ut ,vt), it should be clear that there
is an infinite number of choices of (C∗

1, . . . ,C
∗
n,θ

∗
1 , . . . ,θ ∗

n ) such that
(10) is satisfied and
l(cosθ

∗
1 + · · ·+cos(θ ∗

1 + · · ·+θ
∗
n )) =ut

l(sinθ
∗
1 + · · ·+sin(θ ∗

1 + · · ·+θ
∗
n )) =vt

(15)

because (15) is a system of(n+2) equations in 2n unknowns.

F

Fig. 17 Two deflected shapes that have the same displacements at the
tip. This illustrates whyCi ’s would not be identifiable if there was only
a control point at the tip.
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