Structural and Multidisciplinary Optimization

@ Springer
Draft Manuscript for Review

A computationally efficient approach to swimming monofin optimization

Journal: | Structural and Multidisciplinary Optimization

Manuscript ID: | SMO-05-0038

Manuscript Type: | Research Paper

Date Submitted by the

Author: 29-Jun-2005

Complete List of Authors: | Luersen, Marco; CEFET-PR, Mechanical Engineering Department
le Riche, Rodolphe; Ecole des Mines de Saint Etienne

Lemosse, Didier; INSA de Rouen

Le Maitre, Olivier; Universite d'Evry Val d'Essonne

Keywords: | Monofin Design, Swimming Propulsion , Identification, Optimization

powered by ScholarCOne

Manuscript Central™

Prof. G.I.N. Rozvany, phone: +36 (26) 362 592, e-mail: smo.rozvany@axelero.hu




Page 1 of 10 Structural and Multidisciplinary Optimization

Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

M.A. Luersen - R. Le Riche - D. Lemosse- O. Le Maitre

A computationally efficient approach to swimming monofin
optimization

Received: date / Revised: date

Abstract Monofins provide swimmers with an efficient al-Keywords Monofin Design- Swimming Propulsion
ternative to the standard pair of fins. For example, all shadentification- Optimization

and long distance human swimming records have been es-

tablished using monofins. Current monofin design is mostly

empirical, so the objectives of this work are to analyze mongrmtroduction
propulsion through coupled fluid-structure simulation an

to optimize its flexural stiffness distribution. The optimiza:
tion process maximizes the propulsive power provided

the monofin with a constraint on the total expended pow
In order to be able to carry out the optimization of the co
pled fluid-structure system which is numerically costly t
evaluate, the following simplifications are proposed: (i)
two-dimensional unsteady, inviscid and incompressible flu

onofins already provide the most efficient way of swim-

ing for human beings. However, it is expected that fur-
her progress can be achieved because today’s monofin de-
8ign is empirical and studies in aquatic locomotion modes
%nd oscillating hydrofoils show that more efficient swim-
ming systems exist. Fish like tuna, mackerel, sharks and ma-
flow is considered:; (i) the swimmer is composed of linfine mammals have propulsive efficiencies greater than 90%

ear articulated segments, whose kinematics is imposed %fé‘ngh swimming speed in calm waters (Sfakiotakis et al

: i ; . (i L 99)). Similar efficiencies have been observed for arti-
identified from experimental data; (iii) the monofin is repflig:ial oscillating hydrofoils (Pedro et al (2003); Anderson

resented by rigid bars linked by torsional springs. For va . :
ious allowable swimmer powers optimal 2D stiffness dit @ (1998)). Previous works have been devoted to describ-
the physics and physiology of fin-swimming (Zamparo

tributions are obtained using the Globalized and Bound y o
Nelder-Mead algorithm. Finally, an identification procedur% al (2002); Baly et al (2001)). The objective of the current
ork is to propose a rationale for designing monofins.

is described to translate the optimal 2D stiffness distribtl”
tions into 3D thickness profiles for a given monofin plan-
form shape.

M.A. Luersen

DAMEC - Departamento de Ménica - CEFET-PR
Av. Sete de Setembro, 3165

80230-901 - Curitiba - PR - Brazil

E-mail: luersen@cefetpr.br

R. Le Riche

Ecole des Mines de Saint Etienne, 158 cours Fauriel
42023 - Saint Etienne cedex 2 - France

E-mail: leriche@emse.fr

D. Lemosse

LMR - Laboratoire de Mcanique de Rouen - INSA de Rouen
Avenue de I'Universit

76801 - Saint Etienne du Rouvray - France

E-mail: Didier.Lemosse@insa-rouen.fr

0. Le Mditre Fig. 1 Carbon monofin (Brei€p).
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which is a composite structure in dynamic motion with largihe upper and the lower surfaces join smoothly at the trailing
displacements. There are many works related to the fluetige (Kutta condition); (iii) the total circulation is constant.
structure interaction and its impact on structural design (e.§he advantage is that only the solid boundary and the wake
Kvamsdal et al (1999)), but the numerical costs of typicake discretized, as opposed to meshing the whole domain, so
fluid-structure models do not allow their optimization whiclthat computer time is saved.
requires a large number of evaluations. The swimmer is represented by 4 segments: the arms, the
In order to carry out the monofin optimization, som#orso, the thighs and the tibias. The monofin is modelled by
model simplifications are made in the first part of the articl€: rigid bars articulated by torsional springs with large rota-
(i) a two-dimensional unsteady, inviscid and incompressiliiens allowed (Fig. 2). All bars have equal and constant lin-
fluid flow without separation is assumed; (ii) the swimmer isar mass density. From the analysis of a monofin swimmer
represented by linear articulated segments whose kinematiickeo the swimmer movement is approximately segment-
is identified from experimental swimmer data and imposegjse harmonic:
(i) the monofin is represented by rigid bars linked by tor-

sional springs with large rotations allowed. Due to the smati(t) = Y; +Yisin(2zft) 1)
monofin thickness and flow features, the sheet vortex fluid c )
model presented in Le Mize et al (1999) is used. 6i(t) = O+ O sin2rft—¢), 2

In the second part of the article, the propulsive powgfherey, is the vertical displacement of the hargd, is the

provided by the monofin is maximized with a constraint ogiope between the horizontal and the armsis the phase
the maximum total power expended by the swimmer. Thggle between the vertical hand movement and the arm rota-
design variables are the spring rigidities. The optimizatiqpn g, and¢;, i = 2,5 are the angles and the phases between
problem is solved by the Globalized and Bounded Neldgf;e segmentsi (- 1) andi, respectively. The parameters of
Mead (GBNM) algorithm (Luersen et al (2004))nis two-  Eqs. (1) and (2) (the amplitudé and @, the mean val-
dimensional swimmer-fin model was first introduced and P{fssYC and@¢, the phase anglas and the frequency) and
liminary optimization results given in Luersen et al (2003)the mean swimmer speed (considered to be the free-stream

_ The flexural stiffness distribution obtained from the twospeed)u,, are identified from measured vertical displace-
dimensional optimization is finally translated into a thregnents of the hand, neck, shoulder, elbow, hip, knee, ankle
dimensional monofin (cf. Fig. 1). The mapping can be segf( toe of a sprint swimmer. The following values are ob-

as an identification procedure where the “experience” ist@ined (Luersen et al (2003}, = 3.0m/s,Y; = 0.07m,
2D bars system whose behavior is approximated by a 3 - 00m O, = 34,0% = —16, ¢ = —2226°,

finite element model of the fin. The equivalence betwe@lz = 120°,05 = 16, ¢ = —1528°, @3 = 200°,
the two models can be sought in terms of static behaviggye — _10°, 9, = 17.2°, @, = 14.0°, e = 140,
dynamic behavior, or a mix of static and dynamic behay, — 17.2° @5 = 16.0°, Of = —20.0° andgs = 107.2°.
iors. The advantages of static equivalence is that the load
cases can be taken from the 2D flow simulation and large

displacements analyses are available. However, it neglects , e swimmer -----onoe e fin oo
the fin inertia. On the contrary, the modal dynamic identi- - ™9 : torso thigh  tibia |
fication accounts for both flexural and inertial terms butit e - E\

is, in essence, a small displacements analysis. The 3D thick”

ness distribution is found by minimizing an error function /
between the static and/or modal response of the 2D and 3D X a _ _
monofins. The GBNM minimization algorithm carries out torsional spring C
the identifications. Fig. 2 Swimmer and monofin representation.

2 Two-dimensional modelling of the system The displacements of the first monofin b&g(f), Xs(t)

andys(t)) are imposed because they follow the feet. The
A two-dimensional model of the swimmer-fin system is prdorces distributed over the fin are obtained by means of a
posed which is based on the following assumptions. Theupled fluid-structure calculation. The unknowns of the prob-
Reynolds number for the system is of the order of, X lem are the orientations, the angular velocities and the an-
the viscosity is neglected. By further neglecting obstaclgsilar accelerations of the monofin’s bar joing((), 6i(t),
thickness, flow separation and water compressibility, the udi{t), i = 6,10), and the efforts at the point 5 (which is ap-
steady vortex based flow model of Le Mt et al (1999) proximately the swimmer’s ankleffs(t), Fys(t), Ms(t). The
can be used: the velocity field is obtained by the superposionofin dynamic equilibrium equations are solved by the
tion of a uniform fluid flow and a field induced by vorticed€Newmark time integration scheme @&din and Cardona
emitted at the fiA’s trailing edge. The vortex intensities ar¢2001)). At each iteration, the system of non-linear equa-
calculated at each instant so that the following hold: (i) th®ns is solved using a mixed Newton-Raphson/GBNM scheme.
flow remains attached along the obstacle; (i) the flows frorhe GBNM algorithm (see paragraph 4.2 and Luersen et al
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(2004)) is employed to minimize the residue of the equatiomsble 1 Effects of varying the monofin’s length on the power bal-
when the Newton-Raphson iterations have not decreasedahee-

residue. A visualization of the flow, swimmer and monofin

is given in Fig. 3. Ls(m)| 05 0.72 10

FTiX (W)| —527.62 —80967 —1147.28
e et e e e e A Pr (W) |—115330 —136988 —1747.60
eI ety z ve | 0457 0591 0656
T LR e
T T
L ¢ A Table 2 Effects of changing all stiffness values on the power balance.
TR ST T T o
(N :
C,i=15) 300 500 1000 5000 10000 15000
(Nm/rad)
Prx (W) |~78038 —74939 —80967 —105215 —95202 —84608
Pr (W) |-95034 —100832 —136988 —391757 —495579 —527033

0.821 Q743 0591 0269 Q0192 Q161

2

Fig. 3 Flow, swimmer and monofin visualization. Continuous trace,
the obstacleyk, the wake particles;», the relative velocity of the fluid.

stiffnesse<;. The optimization problem is formulated as,
minPry
such that, (5)
pmn < Py,
3 Optimization problem formulation c¢m <G <M, i=15.

As the majority of the thrust is produced by the monofiry giiffness optimization results and discussion
the purpose of the optimization is to maximize the propul-

sive power provided by the monofin with a constraint on the1 parametric studies
maximum total power expended by the swimmer at the fin.

The time-averaged propulsive power is defined as, In order to have an intuitive comprehension of the system
behavior, parametric studies are now described where the

— 1 T rbs monofin’s length and spring stiffnesses change. In the first

Prx = T —Ts / /0 fx(s)|Us| ds dit, ) study, the monofin’s lengthg varies, while rigidities are
fixed atCi = 1000Nm/rad. Table 1 presents the effects

. . . Ptx, P, and the power efficiencypr = Pt /Ps. Increasing
and the time-averaged power supplied by the fluid to the @Eimprovestx andve, at the expense of a highBy. From

1S, now on, the monofin’s length is set to/@ m, which is the
length of the monofin used by the swimmer whose kinemat-

— 1 T s : . ics was identified.

P11 /Ts /0 (F(8)(X(8) +[Uas|) + fy(9)Y(s)) S A, Tapjes 2 and 3 summarize the effect of the rigidiGesn

@) Psx, P andvp. In Table 2, all the stiffnesses are changed to-
gether. In Table 3, areference case wiigre- 1000Nm/rad,

_ ) o i = 1,5, is perturbed by setting one of tBeto 2000Nm/rad.
whereU., is the swimmer's mean forward speedndy are From these studies, the following pieces of information
the velocity components of the fin in a stationary referengge gptained:
system with respect to the fluid speéd, f,(s) andfy(s) are . o o
the fluid forces per unit length over the fin at the fin naturat- Higher fin stiffness implies more power expended by the
coordinates, Ls is the monofin’s |ength’]’s and T; are the S_Wlmmer The effecton propulswe pOWQr_IS not monotonous:
starting and final calculation times. Energy transmissions on Pix firstincreases and then decreases @ijth _
the swimmer's body are neglected in comparison with ther Moving the higher stiffness near the leading edge in-
fin, consequently; is considered to be the power provided ~Ccreases botRr, andP; while it decreasesp;
to the swimmer. For a swimmer going up-strea®y, and — The efficiencyve is higher for lower fin stiffnesses;

P, calculated by Egs. (3) and (4), are negative. Thus, the The propulsive poweP;, and the total poweP; are
objective function to be minimized B, with alower bound =~ more sensitive to spring stiffnesses near the fin's lead-
on the total poweP;. The design variables are the torsional ing edge than near the trailing edge.
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Table 3 Effects of changing one spring stiffness.

Cy 1000 2000 1000 1000 1000 1000
C 1000 1000 2000 1000 1000 1000
Cs 1000 1000 1000 2000 1000 1000
Ca 1000 1000 1000 1000 2000 1000
Cs 1000 1000 1000 1000 1000 2000

Fzj (W)| —80967 —927.97 —83236 —78965 —790545 —804.12
Pr (W) [—136988 —174894 —151246 —138290 —135435 —136215
vp 0.591 Q531 0550 0571 0584 0590

4.2 Optimization

10 :
- —=— PN = _1400 W
8l —e— P™'=-2000W |
2 P™'=-3000 W

Flexural Stiffness C,, 10% Nm/rad

0 1 | 1
The optimization problem (Eg. (5)) is solved by means of the 0.12 0.24 0.36 0.48 0.6

Globalized and Bounded Nelder-Mead algorithm (Luersen

Position x, m

etal (2004)). The GBNM s a local-global optimization method

based on probabilistic restart. Local searches are perfornfrégi 4 Optimal stiffness distributions.
by an improved Nelder-Mead algorithm (Nelder and Mead

(1965)) where design variables are continuous and can be

bounded, inequality constraints are taken into account by

adaptive penalization, and some search failure cases (e.g. 0.6 ‘ ; ;
simplex degeneracy) prevented. The GBNM does not need — LE

gradient calculation.

The optimization problem is solved for three limits on
the swimmer’s total poweR™" = —1400,—2000 and-3000W. = 0.2 " .~ -~ ]
As a comparison, the power measured on average distan& ' \ \ ‘ A\ \| A A

swimmers in di Prampero et al (1974) was about 100

The higher limits in the second and third cases account fok
the shorter distance and the 2D model that overestimates e?g‘O-Z’
forts (the fluid cannot go around the sides of the obstacle arid
there is no flow separation). The fin rigidities are bounded®

by: C™" = 300Nm/rad andC"® = 15000Nm/rad, i = 1,5.

Figure 4 shows the stiffness distributions for each optimiza-
tion problem and Table 4 presents the associated power bal-_0 8 ‘

o4 | TE §

‘D

f \ 1 ] | ' i \
i ! ) i ) '

! ! ) \ \ | ' ! ! i . ( | i \

- [ [ vy Vo I [

04! vy v Lo [ - (- ' !
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L ' I [ \ v ! ) \
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(" i v ) - ' v '
-0.6- ¥ N ¥ : 5 y . i

ances. The optimal stiffness distributions are tapered from 0 2 4 i 6 8
the leading to the trailing edge. Changes in swimmer total Time, s

power affect mainly the fin near the leading edge while low

stiffness are always optimal near the trailing edge. As Witlg. 5 Evolution of the vertical positions of the fin's leading and trail-
be seen in the final monofin design (Section 6), this optirg edges (LE and TE) for the optimal monofin under the constraint
mization result suggests an increased flexural stiffness nBaf = —2000W.

the leading edge. Figure 5 shows the vertical positions of the

fin's leading and trailing edges as a function of time for the

optimal monofin wheP™" = —2000W.

Table 4 Power balances for optimal stiffness distributions.

P™ (W)| —1400 2000 —3000

P (W) | —97315 —112901 —120837
Pt (W) |—139999 —199954 —298816
Ve 0695 0565 0404

5 Translation into a 3D structure

The stiffness distribution obtained from the previous two-
dimensional optimization is now translated into a three-dimensional
structure. The mapping can be seen as an identification pro-
cedure where the “experience” is a 2D bars system whose
behavior is approximated by a 3D finite element model of

the fin. In its most general statement, this identification prob-

lem is ill-posed since the 3D system has more degrees of
freedom than its 2D counterpart. Many combinations of shape

and thickness distribution can represent the 2D monofin. In
practice, however, the planform shape of the monofin is dic-
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tated by manufacturing (cost of molds) and marketing con-Y

siderations which has yielded forms that mimmick marine h, h, h h h h
mammals (cf. Fig. 1). Once the fin planform shape is given, ¢ ¢ $ ’ $ ! ¢ 5 ¢ 6
the spring stiffnesses can be mapped into a fin thickness dis-* T ¢ T ¢ T ¢ T ¢ T ¢ T X

tribution. Because the fin is manufactured using composite

prepreg layup, the thickness is kept constant spanwise and
varies chordwise at ply drops. The equivalence between the
two models can be sought in terms of static behavior, modal

behavior, or a mix of static and modal behaviors. The ad-

vantages of the static equivalence is that large displacements
analyses may be available. However, it neglects the fin iner- symmetry
tia in comparison to water inertia and fin flexural stiffness.
On the contrary, the modal dynamic identification accounts . \
for both fin inertia and flexural stiffness but it is, in essence, a ]
small displacements analysis. Furthermore, 3D non-bending %1
modes have no pendant in the 2D system, and higher natural
bending frequencies are far away from the frequency of theE ¢ o} N
imposed movement. Hence, the first natural bending mode~ L
is more relevant than other natural bending modes. For these L
reasons, only the first natural mode, which has empirically 93/ ST
been found on the monofin to consistently be bending, is .
considered. The 3D thickness distribution is found by mini- g 4t

mizing 0 012 024 036 048 06 072
X (m)
J = oJstatic+ (1 — a)\]freq ) (6)
where,
S (U2 () (b)
Jstatic = IZlNCP—
.Z (U+v?) 7 Fig. 6 Fin parameterization: thickness profile (a), half-planform shape

and N and finite element mesh (b). The dots represenN@® points where

] W2 Jstatic IS evaluated.
freq = Tl .

o is a weight factor between 0 and 1, that balances contri-
butions from static and modal criteriay;,v;) are the tar-
get displacements at the bar joints of the simplified mode),|dentification results and discussion
(Gi, V) are the displacements at tNE€P corresponding con-
trol points of the 3D finite element moded; is the target
first natural circular frequency of the simplified model an#irstly, whenJ = Jqaiic (¢ = 1), the influence of the load
Wi is the first natural circular frequency of the finite elememiases and the small or large displacements analyses are de-
model. scribed. Three different vertical load cases are tested, as sketched
The 3D fin is analyzed with a finite element model whicin Fig. 7. It should be noted that there are two necessary con-
relies on solid elements improved for thin structures (Lemaodisiens forh* = arg minJyaic to be unique: 1) the equilibrium
and Dhatt (2000)). The parameterization of the fin is deelative angles should be non-null (see Appendix A); 2) there
scribed in Fig. 6. should be at least as many control poilN§;P, as there are
The final thickness distribution is identified by solving, design variables (6 here), otherwise many combinations of
design variables may produce the same displacements at the

minJ , )
hi control points.
such that, (8)
h™ < h < h™ i=16and Secondly, the difference between minimizidgyi. and
where the thicknessésare bounded b = 1.5x 104 m Finally, the problem is solved for a mixed static and modal

andh™*=2x 102 m, i = 1,6. The constraints; < hi_1, criterion (@ = 0.5).

i = 2,6, are handled by reordering the variablgsn the

finite element (FE) analysis but keeping them unordered in The GBNM algorithm is used to solve problem (8). In
the optimization. It was observed on the current problem thatder to protect the final design found in this work, a material
this reordering is more efficient than the adaptive penalizéescription is intentionally left out and the ply thicknesses
tion of the GBNM optimizer. are normalized.
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4
W T T T T T T T T ! | [+ Initial distribution

P —— Load case 1

0 --=-- Load case 2
a 7] L
® Q 0.75 —~— Load case 3
/ . S
7 =
L e
F, T
(b) £
©0.25
P3 <

g 0 3 4 5
’ Thickness reference number (cf. Fig. 6(a))

P3 Fig. 8 Normalized identified thickness distributions for small dis-
(c) placements formulation.

Fig. 7 The load cases considered for the thickness identification.

0.04

6.1 Static small displacements formulation “+ FE initial solution

—— FE final solution
First, a static analysis procedue£ 1in Eq. 6) undersmall || 2D bars model
displacements is carried out. The three load cases of Fig. 70.03
are tested setting; = 4.0875N/m, F, = 0.73575N and

ps = 4.0875N/m. The identified thicknesses obtained for _

this formulation are presented in Fig. 8. For the load casé3 g g2

considered, it can be noted that the thickness distributions st
are very close, the main difference being a 2.5% variation L wt
in hy value. Figure 9 shows the deformed positions of the 001 A |
simplified 2D bars model and the mid-plane symmetry line ~* P
(z=0) of the FE model built using the thicknesses identified P 7
under load case 1. e ¢

0 012 0.24 0.36 y 0m48 0.6 0.72

6.2 Static large displacements formulation
Fig. 9 Deformed shapes comparison for small displacements formula-
The three load distributions used in the small displacemertﬁ'f?’ load case 1.
identification are kept but the intensities are six times higher
in order to generate a large displacements problpm:=
24525N/m, F, = 4.4145N andpz = 24.525N/m. small and large displacements solutions, respectively. For all
The identified thicknesses are presented in Fig. 10. Fatic formulations it is less than5%.
the load cases considered, it can be noted that thickness disit is observed that for the static small displacements for-
tributions are close, the main difference being a 9% variatigiulation the load case influence is very small. For the large
in the h, value. Figure 11 shows the deformed shape of tiaisplacements procedure there is a higher difference among
bars model and the mid-plane symmetry lize<0) of the the results obtained with different load cases. Probably be-
FE model built using the identified thicknesses under loaduse in a large displacements (geometrically non-linear) FE
case 1. analysis the displacements are stress dependent, and differ-
Table 5 shows the first natural frequency of the 3D fin fant load cases generate different state of stresses. The solu-
static formulation solutions. The reader should keep in mittidns in small and large displacements are close, with large
that frequencies are not accounted for in the static identifiatisplacements solutions being thicker near the monofin’s lead-
tions. The difference if; is less than % and 18% among ing edge (see Fig. 13). This is explained by the fact that

Prof. G.I.N. Rozvany, phone: +36 (26) 362 592, e-mail: smo.rozvany@axelero.hu
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Table 5 First natural frequencyf{ = %), in hz, for static formulation

solutions. 0.2
Load case| Small displacements  Large Displacements “| -+~ FE initial solution
1 2 4842 > 5584 —— FE final solution
2 2.4777 2.5137 015l 2D bars model ]
3 2.4720 2.5208 )
E .
~ 01’ A}’* 7
large displacements analysis generates larger vertical dis-
placements in the clamped region.
0.05+ ]
4 - %~ |nitial distribution 0 012 024 036 048 06 0.72
3 —=— Load case 1 X (m)
8075 -2~ Load case 2 I
Q- —— Load case 3 Fig. 11 Deformed shapes comparison for large displacements formu-
ALC) lation, load case 1.
£ \
§ 056 - AN\ Yemmmmmm o Hmmmmmm o S =
= 6.4 Mixed formulation
£
S 0.25 In order to take into account both static and dynamic behav-
& o iors of the monofin, a mixed criteriorx(= 0.5 in Eq. 6) is
used. For the static analysis, only load case 1 under small
0 ‘ ‘ ‘ ‘ displacements is considered since load cases do not gener-
1 2 3 4 5 6 ate different solutions (at the condition that the equilibrium

Thickness reference number angles are non-null, cf. Appendix A), and the discrepancies

between large and small displacements solutions are negli-

Fig. 10 Normalized identified thickness distributions for large disgible.

placements formulation. Figure 13 compares solutions to the mixed, the static
linear (small displacements amd= 1), and the static non-
linear (large displacements and= 1) problems. Figure 14
shows the deformed shapes of the bars model and the mid-
plane symmetry linez= 0) of the FE model built with the
identified thicknesses. For the mixed formulation solution,

6.3 First natural frequency formulation twhle firzstzrﬁtgrr]z;l frequency of the finite element moddlis

2 . . . .
In this identification procedure, only the first natural fre- In comparison to the static analysis formulations, mate-

quency is consideredx(= 0 in Eq. 6). The first natural fre- rial is removed from the clamped region and added at the tip.
quency of the 2D system if — % — 1.5400 hz It was This provides lower first natural frequency, which is closer
2t T ™

numerically observed that this formulation presents mahs&m?hzeljtarrg%?tild Zthz;ﬁclsdetz:‘g?rii dagﬁg]psé a slight departure

solutions that are very close, i.e., many thickness distribfu— - . .
y y As can be seen in Fig. 13, every optimized profile ad-

tions correspond to the frequendy. Figure 12 shows the ; . :
P g ¥ 1id vocates an increased thickness near the leading edge and a

solutions found by GBNM optimization algorithm having . o ) X
a deviation smaller than % 104 hz, and the correspond-qhm!1er trailing edgg area, in cprn’parlson fo a state of the art
flgsign (a commercialized Breier's monofin).

ing modes, in a single run of 1500 analyses. Note that t
GBNM algorithm has a restart procedure which permits to
locate different local optima in a single run.
There are several solutions going from highly taperetiConclusion

to uniform thickness. The maximum amplitude is at trail-

ing edge for all solutions. The maximum curvature changesstrategy for optimizing a swimming monofin has been pre-
moving from the clamped region for Solution 1, towards th&ented. It is based on the optimization of a simplified two-
trailing edge for Solutions 2 and 3, respectively. dimensional swimmer-fin-fluid model followed by a map-
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8
1 ‘ . 1 : .
—— Solution 1 A --=-- Static small disp.
--o-- Solution 2 —— Static large disp.
@ —+— Solution 3 0 —o— Mixed (static/modal)
(%] L [ i
Q 0.75 Q 0.75 Breier design
- X
L Q
= £=
32 2 0.5 1
N N
© ©
£ £
g § 0.25 ) ]
S .
o1 2 3 4 5 6 01 2 3 4 5 6
Thickness reference number Thickness reference number
@ Fig. 13 Comparison among the three identification formulations and
the Breier's monofin design.
1 : —
—— Solution 1
i Solut!on 2 0.04 — —
075 —+— Solution 3 -+-- FE initial solution
' —— FE final solution
fffff 2D I
0.03 bars mode |
> 05 e
~ 0.02/ 1
0.25¢ .
. 0.01r ]
WWWWW Pl = A
0 012 0.24 036 0.48 0.6 0.72
X (m)

0 012 024 036 048 06 072
(b) X,

Fig. 12 Normalized identified thickness distributions for first natural . . ) )
frequency formulation (a) and corresponding modes, normalized big- 14 Deformed shapes comparison for mixed formulation, load

the maximal vertical displacement (b). case 1.

ping of the result into a three-dimensional structure. Thent to the optimized 2D system. The influence of the various
two-dimensional model consists of an unsteady vortex bageemulations on the final thickness distributions have been
fluid model in dynamic equilibrium with a bar system represtudied.
senting the fin. Itis numerically efficientand can be included |t js recommended to choose the mixed static/dynamic
into an optimization loop. The flexural distribution over th@ormulation when translating a 2D fin design into 3D. In-
bar system is optimized by maximizing the propulsive powgleed, the static and dynamic formulations do no yield the
with a bound on the total power. The optimal stiffness distréame designs. In terms of static analysis, a small displace-
butions are tapered from the leading to the trailing edge. ments finite element model is sufficient. It is observed that
The solution has then been translated into a 3D monofimall and large displacements formulations do not present
structure. The shape and the material of the monofin aignificant design differences. Moreover, when mixed for-
fixed by manufacturing constraints. The thickness distribmulation is considered, a highly accurate static analysis is
tion is identified to be statically and/or dynamically equivanot essential because static and dynamic equivalences be-
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tween the 2D and 3D models are traded-off, so that there is
no longer a precise deformed shapes match.

In both the optimization and identification steps, the GBNM
algorithm has performed the minimizations.
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94:0/

C 4, non identifiable

(@
0,=0 F

C, non identifiable

F;cos (0,+0,+65)=

= F,(cos(0,+6,+0;)+cos(0,+6,+05;+6,))
(b)

Fig. 16 Examples of loads such that the flexural stiffnesses are not
identifiable, (a) the tip is not loaded, (b) moments cancel at joint 3.

Fig. 16, first when the tip of the system is not loaded, then when the
moments cancel at a joint.

Besides the load case, we note, without formal proof, that the con-
trol points used to calculat®aic should be numerous and well spread
on the system in order to guarantee the uniqueness (():f aﬂgsmigl

or

As a counter-example (see Fig. 17), if there is only a control point at
the tip with a target displacemefit,*), it should be clear that there
is an infinite number of choices o, ...,C;, 6;,...,6;) such that

I(cosf; +---+cog6; +---+67)) =u (15)

(10) is satisfied and
I(sin@; 4 ---4sin(0; 4 --- 4+ 67)) =V}

because (15) is a system @f+ 2) equations in & unknowns.

Fig. 17 Two deflected shapes that have the same displacements at the
tip. This illustrates whyZi’s would not be identifiable if there was only
a control point at the tip.
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