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ABSTRACT

The construction and implementation of a stochas-
tic flow solver is described. The solver combines a spec-
tral stochastic uncertainty representation scheme with
a finite difference projection method for flow simula-
tion. The uncertainty quantification scheme is based
on representing the stochastic dependence of the so-
lution in terms of the Polynomial Chaos system, and
the coefficients in this representation are obtained us-
ing a Galerkin approach. It is shown that incorporation
of the spectral uncertainty representation scheme into
the projection method results in a coupled system of
advection-diffusion equations for the various uncertainty
fields, and in a decoupled system of pressure projection
steps. This leads to a very efficient stochastic solver,
whose advantages are illustrated using transient simula-
tions of transport and mixing in a microchannel.
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Navier-Stokes, Uncertainty.

1 INTRODUCTION

The simulation of microfluid systems is often compli-
cated due to uncertainties in material properties as well
as initial and boundary conditions. Thus, in order to be-
come effective tools, it is essential for simulation-based
design approaches to include a rational assessment of
these uncertainties. Typically, uncertainty quantifica-
tion is based on Monte-Carlo (MC) approaches [1], [2]
which rely on repeated model computations to span the
relevant parameter ranges. However, this approach can
be impractical for complex models with many uncer-
tain parameters, and it does not generally provide ade-
quate information on sensitivities. On the other hand,
the stochastic spectral finite element method (SSFEM)
provides a potentially more efficient approach to uncer-
tainty quantification. The key concept in SSFEM [3] is
to consider the uncertainty as generating a new dimen-
sion, and to regard the solution as being dependent on
this dimension. A convergent expansion along the new

dimension is then sought in terms of the Polynomial
Chaos system [4], [5], and the coefficients in this rep-
resentation are determined through a weighted residual
formalism. So far, SSFEM has been primarily applied
in structural and soil applications, but has not yet been
applied to fluid problems involving advection, mixing or
chemical reactions.

This paper focuses on the adaptation of the SSFEM
methodology to microchannel flow. We briefly outline
the construction of a numerical scheme that incorpo-
rates the spectral stochastic uncertainty representation
with a finite-difference projection method for flow simu-
lation [6]. This results in a stochastic projection method
(SPM) whose implementation is illustrated in light of
simulations of transport and mixing in microchannel
flow. For brevity, we restrict our attention to a gen-
eral Navier-Stokes construction. This formulation, how-
ever, can be readily adapted to an unsteady (or pseudo-
transient) Stokes flow formulation.

2 APPROACH

2.1 Governing Equations

We consider 2D flow, in the (z, y) plane, of a uniform-
density, thermally-stratified, Newtonian fluid inside a
narrow channel of height H and width B. The evolution
of the flow within the channel is governed by the mass,
momentum, and energy conservation equations:

V-u=0 (1)
%Iti_'_(u.V)u:—Vp—FV'[V?J (2)
36_1: +V-(uT) = V- (AVT) (3)

where u is the velocity field, p is the pressure, p is the
density, p = p/p, v is the kinematic viscosity, S is the
strain rate tensor, T is temperature and A is the thermal
diffusivity.
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To illustrate the proposed approach, we focus on
the case of uncertain transport properties and boundary
conditions, and restrict our attention to stochastic pro-
cesses generated by Gaussian random variables. Within
this context, we consider the simulation of transport and
mixing in the double-inlet microchannel schematically
illustrated in figure 1. The second inlet stream has un-
certain temperature, modelled as a Gaussian random
variable with standard deviation of 0.177.f, where T}y
is the mean temperature. Meanwhile, the dependence
of the viscosity on temperature is given by:

%%HK'( (%) = Trey) (4

where vy = v(Tres), and K' is a constant that reflects
the sensitivity of the viscosity on temperature variation.
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Figure 1: Schematic illustration of the double-inlet mi-
crochannel.

2.2 Stochastic Formulation

We rely on the polynomial chaos expansion of the
stochastic fields:

T(x,t,6) ZT(CL’ )T (5)
1=0
P
u(x,t,0) = Y ui(z, 1)) (6)
=0
p(x,t,0) = sz(w t)¥ (7)
=0
P
v(@,1,0) = w(l — K) + nK' Y Ti(z,t)¥:(6) (8)
=0

where K = K'Ty.f, P is the order of the polynomial
chaos expansion, and the argument 8 is used to denote
the probabilistic character of the corresponding field.

Introducing (5) into the energy equation, multiplying
by ¥ and evaluating the expectation, we get:

8Ty
S +§§C”kuz VT = AV2T; 9)

where the expectation is defined according to:
1 o £
= — -=)d 10
=g s@es(-5)e o

< \I’i\I’j‘I’k >
< U ¥ >

and

Cijk = (11)
are constants that are independent of the solution. In
a similar fashion, we introduce (6-8) into the Navier-
Stokes equations and perform a similar decomposition
to obtain:

auk - T Z Zczyk(uz V)U] = 1/0(1 — K)V
i=0 j=0
P P _
+1/0K' Z ZCijkv . (T_,S(’uz)) — Vpk (]_2)

=0 j=0
together with the divergence constraints:
V.u,=0 (13)

Note that a transient Stokes flow formulation can be
obtained simply by ignorning the convective acceleration
terms in Eq. (12).

2.3 Solution Scheme

Our approach to the formulation of the stochastic
solver is based on the observation that the velocity di-
vergence constraints are decoupled, and this suggests the
implementation of a projection-type scheme [7] in which
the advection and diffusion terms are integrated in a first
fractional step, and the divergence constraints are then
enforced in a second fractional step. Since the pressure
terms and divergence constraints are decoupled, this ap-
proach results in a set-of P + 1 decoupled pressure pro-
jection steps. Since these steps typically account for the
bulk of the computational effort in incompressible flow
simulations, the solution of the stochastic system can
be obtained at essentially a cost of P + 1 deterministic
solutions.

The present formulation of the stochastic solution
scheme adapts elements of previously developed low-
Mach-number solvers in [8], [9]. We rely on discretiza-
tion of all fields variables using a uniform Cartesian
mesh with cell size Az and Ay in the z and y direc-
tions, respectively. The velocity modes uy are defined
on cell edges, while the scalar fields py, Tk, and vy, are
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defined on cell centers. Spatial derivatives are approxi-
mated using second-order centered differences.

The governing equations are integrated using a frac-
tional step projection scheme. In the first fractional
step, we integrate the coupled advection-diffusion equa-
tions:

Mup e~ .
%‘ + Z Z Cijk (’Ul—i . V)uj = Vo(]. — K)Vzuk
i=0 j=0
P P _
+VOKl Z Z C,-jkV . (T]S(u,)) (14)
i=0 j=0

for k = 0,...,P. The explicit, second-order Adams-
Bashforth scheme is used for this purpose; we thus have:
e —Up _3pn L

At T 27k 2
where uj} are the predicted velocity modes, At is the

time step,

H™'  k=0,...,P (15)

Hk = 1/0(1 - K’T,ef)v2uk

P P
+ Z Z Cijk [l/oKIV . (TJ—S_(’U,,)) - (’U.i . V)’u]] ) (16)
=0 j=0
and the superscripts refer to the time level. A similar
treatment is used for the energy equation, which is in-
tegrated using:

n+1 n
% - g,]g‘% n-l  k=0,...,P (I7)
where
P P
Jp = A\V2T), — Z Z Cijru; - VT (18)
1=0 j=0

In the second fractional step, we perform a pressure
correction to the predicted velocity in order to satisfy
the divergence constraints. Specifically, we have:
=_Vpk k=0,,P (19)
where the pressure fields p; are determined so that the
fields u}™! satisfy the divergence constraints in (13), i.e.

Voultt =0 (20)

Combining equations (19) and (20) results in the follow-
ing system of decoupled Poisson equations:

Vzpk=—Z%V-uz k=0,...,P (21)
Similar to the original projection method, the above
Poisson equations are solved, independently, subject to
Neumann conditions that are obtained by projecting
equation (19) in the direction normal to the domain
boundary [7], [10]. A fast, Fourier-based solver is em-
ployed for the inversion of the discrete Poisson operator.

3 RESULTS

In the simulations, the channel inlet consists of two
streams having identical parabolic velocity profiles with
peak velocity V;.5. The two inlet streams are separated
by a plate of thickness D. The flow is characterized by
the Reynolds number Re = V. B/, the blockage ratio
D/B, and the Prandtl number \/vo. Here, vy = v(Trey)
is the reference viscosity. Note that the blockage ratio
and Re can be combined to define a Reynolds num-
ber based on the plate thickness, Rep = VieyD/vp =
ReD/B. If Rep is large enough the wake of the plate
is unstable and periodic vortex shedding is observed,
at least for small downstream distances. This situa-
tion arises in the example below, where D/B = 0.2,
Re = 826, and Rep = 165.2. Results are obtained for
different values of K, K = 0.1, 0.2 and 0.4. In all cases,
the Prandtl number A/vy = 6. The computations are
performed in a domain with height H = 5B, using a
100 x 352 grid, a time step AtV,es/B =2x 1072 and a
polynomial chaos expansion with P = 3.
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Figure 2: Time-averaged profiles of the normalized
streamwise velocity v (top) and temperature 7' (bot-
tom), at the plane y/B = 1.25. The curves depict re-
sults obtained for K = 0.1, 0.2 and 0.4.

Profiles of time-averaged, normalized values of the
streamwise velocity and temperature are given in fig-
ure 2; profiles of the standard deviation in v and T are
plotted in figure 3. The time-averaged velocity profile
reflects the development of a laminar/transitional wake.
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The results indicate that the mean velocity prediction is
essentially independent of the coupling parameter while
the uncertainty in v exhibits a significant dependence
on K. This behavior is in contrast with that observed
for the temperature, whose mean profile exhibits a pro-
nounced dependence on K while the standard deviation
appears to be insensitive to K. Note that the standard
deviation in T follows the imposed inlet conditions, as
it varies smoothly from 0 at the left boundary to 0.1 at
the right wall. Meanwhile, the standard deviation in v
exhibits a more complex structure, which reflects tight
coupling between viscous, inertial and pressure terms.
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Figure 3: Time-averaged standard deviation profiles at
y/B = 1.25 for the normalized v-velocity and (top) and
temperature (bottom). The curves depict results ob-
tained for K = 0.1, 0.2 and 0.4.

The complex dependence of the stochastic solution
on K, as well as the appearance of node points in the
standard deviation profile of v, provide an interesting
example regarding possible applications of the uncer-
tainty quantification scheme. For instance, one observes
that the standard deviation in v is vanishingly small at
cross-stream locations z/B ~ 0.3 and /B ~ 0.7, where
the mean signal approaches its peak value (compare fig-
ures 2 and 3). The ratio of the standard deviation to the
mean value is clearly minimized at the corresponding lo-
cations. Thus, these locations constitute ideal sites for

probing the streamwise velocity, in a fashion that mini-
mizes the effect of uncertainty in the inlet temperature.
This illustrates how quantitative information obtained
using the uncertainty propagation scheme may be ap-
plied to system analysis and experiment design.

4 CONCLUSION

In this paper, a stochastic solver is developed which
allows the propagation of uncertainty in incompress-
ible flow simulations. The solver combines a spectral
stochastic uncertainty representation scheme with a pro-
jection method for incompressible flow. Implementation
of the stochastic solver is illustrated in light of transient
simulations of transport and mixing in a microchannel.
Attention is focused on the simplified situation where
the uncertain data can be represented as a Gaussian
random variable, and the resulting stochastic scheme is
applied to analyze uncertainty in transport properties
and boundary conditions. Work is currently underway
to generalize the present formulation to situations in-
volving reacting flow, random processes, and correlated
random inputs.
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